The coastal region of the Suez Gulf, is one of the most densely industrialized zones in Egypt. In order to assess the quality of Suez Gulf coastal waters for the sustainable use and development, and consequently for t...The coastal region of the Suez Gulf, is one of the most densely industrialized zones in Egypt. In order to assess the quality of Suez Gulf coastal waters for the sustainable use and development, and consequently for the national income, 12 field campaigns were carried out in 3 years (2011-2013). The results of beach litter cleared out that the shoreline of the Suez Gulf, especially Ras Gharib area was subjected to many factors which undoubtedly affected the rate of man-made litter accumulation. The most abundant visible items were general litter as they represented 30.64% of the total items encountered. Oil, seaweeds as well as old and new tar constituted 15.41%, 14.85% and 11.84%, respectively. The increase on the levels of water temperature, Chl-a, TSM, DO, BOD, DOM, COD, ammonium ion, nitrite, nitrate, total phosphorus, silicate and total nitrogen developed a eutrophic region. In general, dissolved inorganic nitrogen (DIN) species were almost 9 times higher in the northern parts compared to the south-ern ones revealing that the northern parts of the Gulf were more affected by human impacts compared to the southern area. Moreover, concentrations of most studied metals such as Zn, Mn, Ni, Cu, Cr, Cd, Pb, and Hg were higher in Northern parts com-pared to southern parts of the Gulf. The concentrations of dissolved metals in the northern and southern Suez Gulf followed the following order: Fe ≥ Zn ≥ Cu > Pb > Mn > Ni > Cr > Cd ≥ Hg. Except for Hg, concentrations of metals were in the accepta-ble ranges recommended internationally. Hg concentrations especially in the northern Suez Gulf were slightly higher than the permissible levels. As the northern parts of the Gulf were more suffered from oil pollution, total petroleum hydrocarbons revealed higher concentrations in the northern parts compared to the southern parts of the Gulf. Seasonal variations, on the other hand, indicated higher levels of DO, BOD, DOM and COD, chloropyll-a, TSM, ammonia, nitrate, total nitrogen in winter compared to their corresponding 展开更多
In order to assess the quality of the Aqaba Gulf coastal waters for the sustainable use and development, and consequently for the national income, four field campaigns were annually carried out during the period from ...In order to assess the quality of the Aqaba Gulf coastal waters for the sustainable use and development, and consequently for the national income, four field campaigns were annually carried out during the period from 2011-2013 to monitor hydrographic variables, i.e. temperature, salinity, pH, etc., nutrients, some heavy metals, i.e. iron, lead, copper, cadmium, chromium, etc. in addition to petroleum hydrocarbons. Except for the area of Sharm El-Sheikh Harbor, the results for the density, composition, and distributions of beach litter cleared out that the Egyptian shoreline of the Aqaba Gulf is relatively not affected by man-made litter. The area of Sharm El-Sheikh Harbor was subjected to many factors which undoubtedly affected the rate of man-made litter ac-cumulation, especially, oil contamination (oil and old or new tar) which is a good es-timator of levels of oil contamination and an effective means of evaluating the poten-tial threat of oil on coastal resources. The results of the present study cleared out also that water temperature followed seasonal changes in air temperature. Aqaba Gulf water is characterized by its high salinity and the presence of well oxygenated waters. Minor changes in the distribution of pH, BOD, DOM and COD, revealed limited effects of human impacts. Low levels of Chl-a and TSM concentrations and high transparency revealed also negligible effects for human impacts. Significantly higher sea water temperatures, TSM, DO, BOD, DOM, COD, NH<sub>4</sub>, NO2, PO<sub>4</sub> and TP were observed in summer season compared to their corresponding values in winter season. On contrast, higher values of chlorophyll-a, NO2, TN, and SiO<sub>4</sub> were observed in winter compared to summer season. Based on the mean annual values, Aqaba Gulf coastal waters are classified as oligotrophic to mesotrophic state. The concentrations of dissolved inorganic nitrogen forms followed the following order: NH<sub>4</sub>= NO<sub>3</sub>>NO2. In general, the majority of TN in winter was in the form of organic-N展开更多
文摘The coastal region of the Suez Gulf, is one of the most densely industrialized zones in Egypt. In order to assess the quality of Suez Gulf coastal waters for the sustainable use and development, and consequently for the national income, 12 field campaigns were carried out in 3 years (2011-2013). The results of beach litter cleared out that the shoreline of the Suez Gulf, especially Ras Gharib area was subjected to many factors which undoubtedly affected the rate of man-made litter accumulation. The most abundant visible items were general litter as they represented 30.64% of the total items encountered. Oil, seaweeds as well as old and new tar constituted 15.41%, 14.85% and 11.84%, respectively. The increase on the levels of water temperature, Chl-a, TSM, DO, BOD, DOM, COD, ammonium ion, nitrite, nitrate, total phosphorus, silicate and total nitrogen developed a eutrophic region. In general, dissolved inorganic nitrogen (DIN) species were almost 9 times higher in the northern parts compared to the south-ern ones revealing that the northern parts of the Gulf were more affected by human impacts compared to the southern area. Moreover, concentrations of most studied metals such as Zn, Mn, Ni, Cu, Cr, Cd, Pb, and Hg were higher in Northern parts com-pared to southern parts of the Gulf. The concentrations of dissolved metals in the northern and southern Suez Gulf followed the following order: Fe ≥ Zn ≥ Cu > Pb > Mn > Ni > Cr > Cd ≥ Hg. Except for Hg, concentrations of metals were in the accepta-ble ranges recommended internationally. Hg concentrations especially in the northern Suez Gulf were slightly higher than the permissible levels. As the northern parts of the Gulf were more suffered from oil pollution, total petroleum hydrocarbons revealed higher concentrations in the northern parts compared to the southern parts of the Gulf. Seasonal variations, on the other hand, indicated higher levels of DO, BOD, DOM and COD, chloropyll-a, TSM, ammonia, nitrate, total nitrogen in winter compared to their corresponding
文摘In order to assess the quality of the Aqaba Gulf coastal waters for the sustainable use and development, and consequently for the national income, four field campaigns were annually carried out during the period from 2011-2013 to monitor hydrographic variables, i.e. temperature, salinity, pH, etc., nutrients, some heavy metals, i.e. iron, lead, copper, cadmium, chromium, etc. in addition to petroleum hydrocarbons. Except for the area of Sharm El-Sheikh Harbor, the results for the density, composition, and distributions of beach litter cleared out that the Egyptian shoreline of the Aqaba Gulf is relatively not affected by man-made litter. The area of Sharm El-Sheikh Harbor was subjected to many factors which undoubtedly affected the rate of man-made litter ac-cumulation, especially, oil contamination (oil and old or new tar) which is a good es-timator of levels of oil contamination and an effective means of evaluating the poten-tial threat of oil on coastal resources. The results of the present study cleared out also that water temperature followed seasonal changes in air temperature. Aqaba Gulf water is characterized by its high salinity and the presence of well oxygenated waters. Minor changes in the distribution of pH, BOD, DOM and COD, revealed limited effects of human impacts. Low levels of Chl-a and TSM concentrations and high transparency revealed also negligible effects for human impacts. Significantly higher sea water temperatures, TSM, DO, BOD, DOM, COD, NH<sub>4</sub>, NO2, PO<sub>4</sub> and TP were observed in summer season compared to their corresponding values in winter season. On contrast, higher values of chlorophyll-a, NO2, TN, and SiO<sub>4</sub> were observed in winter compared to summer season. Based on the mean annual values, Aqaba Gulf coastal waters are classified as oligotrophic to mesotrophic state. The concentrations of dissolved inorganic nitrogen forms followed the following order: NH<sub>4</sub>= NO<sub>3</sub>>NO2. In general, the majority of TN in winter was in the form of organic-N