期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Optimal Control and Bifurcation Issues for Lorenz-Rössler Model
1
作者 Saba M. alwan abdo M. al-mahdi Omalsad H. Odhah 《Open Journal of Optimization》 2020年第3期71-85,共15页
Optimal control is one of the most popular decision-making tools recently in many researches and in many areas. The Lorenz-R<span style="FONT-FAMILY:;COLOR: #4f4f4f" font-size:14px;white-space:normal;back... Optimal control is one of the most popular decision-making tools recently in many researches and in many areas. The Lorenz-R<span style="FONT-FAMILY:;COLOR: #4f4f4f" font-size:14px;white-space:normal;background-color:#ffffff;?=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">&#246;</span></span>ssler model is one of the interesting models because of the idea of consolidation of the two models<span style="font-family:Verdana;">:</span><span style="font-family:Verdana;"> Lorenz and <span style="white-space:nowrap;"><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">&#246;</span></span><span style="FONT-FAMILY:;COLOR: #4f4f4f" font-size:14px;white-space:normal;background-color:#ffffff;?=""></span>ssler. This paper discusses the Lorenz-R<span style="FONT-FAMILY:;COLOR: #4f4f4f" font-size:14px;white-space:normal;background-color:#ffffff;?=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">&#246;</span></span>ssler model from the bifurcation phenomena and the optimal control problem (OCP). The bifurcation property at the system equilibrium <img alt="" src="Edit_128925fa-e315-4db4-b9e4-9cd999342cb9.bmp" /> </span><span style="font-family:Verdana;">is studied and it is found that saddle-node and Hopf bifurcations can be holed under some conditions on the parameters. Also, the problem of the optimal control of Lorenz-R<span style="FONT-FAMILY:;COLOR: #4f4f4f" font-size:14px;white-space:normal;background-color:#ffffff;?=""><span style="color:#4F4F4F;font-family:"font-size:14px;white-space:normal;background-color:#FFFFFF;">&#246;</span></span>ssler model is discussed and </span><span style="font-family:Verdana;">it </span><span style="font-family:Verdana;">u</span><span style="font-family:Verdana;">ses</span><span style="font-family:Verdana;"> the Pontryagin’s Maximum Principle (PMP) to derive the optimal control inputs that achieve the optimal trajectory. Numerical 展开更多
关键词 Lorenz-Rössler Model BIFURCATION Pontryagin Principle Optimal Control Problem
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部