期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Soil Organic Carbon and Nitrogen Dynamics in Arabica Coffee Agroforestry Systems in the Noun Division, West Cameroon
1
作者 abdel malik atoupka Emile Temgoua +2 位作者 Lucie Félicité Temgoua Jean Baurel Atchombou Steve Tassiamba 《Open Journal of Forestry》 2023年第3期262-277,共16页
Agroforestry systems (AFSs) offer viable solutions to climate change because of the below-ground biomass (BGB) that is maintained by the soil. Therefore, spatially explicit estimation of their BGB is crucial to accoun... Agroforestry systems (AFSs) offer viable solutions to climate change because of the below-ground biomass (BGB) that is maintained by the soil. Therefore, spatially explicit estimation of their BGB is crucial to account for emission reduction efforts. A study to assess soil organic carbon (SOC) and nitrogen dynamics in Arabica coffee agroforests was conducted in two subdivisions (Foumbot and Kouoptamo) of the Noun Division in western Cameroon. The methodological approach involved the collection of 150 soil samples taken at different depths: 0 - 10, 10 - 20 and 20 - 30 cm. Depending on the depth, the SOC stock is 27.93 ± 1.13 tC/ha at 10 cm depth, 22.37 ± 1.47 tC/ha at 20 cm and 20.79 ± 0.31 tC/ha at 30 cm. According to the age classes of the Arabica coffee systems (ACA), the C/N ratio in our study area averaged 26.94 ± 13.60 for the (5 - 20) year old systems in Foumbot and 60.64 ± 48.80 for the (20 - 35) year old systems in Kouoptamo. Depending on the depth, at 10 cm this ratio is higher in Kouoptamo than in Foumbot with a maximum value of 57 and 38 respectively for the two subdivisions. In view of the results obtained, it would be important to analyse the types of microorganisms responsible for the decomposition of organic matter which is linked to soil organic carbon. 展开更多
关键词 Agroforestry Systems Coffee Trees Soil Organic Carbon Noun Division West Cameroon
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部