Dihadron azimuthal correlations containing a high transverse momentum(pr)trigger particle are sensit-ive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the tr...Dihadron azimuthal correlations containing a high transverse momentum(pr)trigger particle are sensit-ive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium,ie.jet-quenching.Previous measurements revealed a strong modification to di-hadron azimuthal correlations in Au+Au collisions with respect to ptp and d+Au collisions.The modification in-creases with the collision centrality,suggesting a path-length or energy density dependence to the je-quenching ef-fect.This paper reports STAR measurements of dihadron azimuthal correlations in mid-central(20%-60%)Au+Au collisions at√^(S)NN=200 GeV as a function of the trigger particle's azimuthal angle relative to the event plane,Ф_(s)=|Ф_(t)-ψ_(Ep)|.The azimuthal correlation is studied as a function of both the trigger and associated particle pr.The subtractions of the combinatorial background and anisotropic flow,assuming Zero Yield At Minimum(ZYAM),are described.The correlation results are first discussed with subtraction of the even harmonic(elliptic and quadrangu-lar)flow backgrounds.The away-side correlation is strongly modifed,and the modification varies withФ_(s),with a double-peak structure for out-of-plane trigger particles.The near-side ridge(long range pseudo-rapidity△_(η)correla-tion)appears to drop with increasingФ_(s)while the jet-like component remains approximately constant.The correla-tion functions are further studied with the subtraction of odd harmonic triangular flow background arising from fluc-tuations.It is found that the triangular flow,while responsible for the majority of the amplitudes,is not sufficient to explain theφs-dependence of the ridge or the away-side double-peak structure.The dropping ridge withФ_(s)could be attributed to aФ_(s)-dependent lliptie anisotropy;however,the physics mechanism of the ridge remains an open ques-tion.Even with aФ_(s)-dependent elliptic flow,the away-side correlation structure is robust.These results,with exte展开更多
Biochar,an environmentally friendly soil conditioner,is produced using several thermochemical processes.It has unique characteristics like high surface area,porosity,and surface charges.This paper reviews the fertiliz...Biochar,an environmentally friendly soil conditioner,is produced using several thermochemical processes.It has unique characteristics like high surface area,porosity,and surface charges.This paper reviews the fertilizer value of biochar,and its effects on soil properties,and nutrient use efficiency of crops.Biochar serves as an important source of plant nutrients,especially nitrogen in biochar produced from manures and wastes at low temperature(≤400℃).The phosphorus,potassium,and other nutrient contents are higher in manure/waste biochars than those in crop residues and woody biochars.The nutrient contents and pH of biochar are positively correlated with pyrolysis temperature,except for nitrogen content.Biochar improves the nutrient retention capacity of soil,which depends on porosity and surface charge of biochar.Biochar increases nitrogen retention in soil by reducing leaching and gaseous loss,and also increases phosphorus availability by decreasing the leaching process in soil.However,for potassium and other nutrients,biochar shows inconsistent(positive and negative)impacts on soil.After addition of biochar,porosity,aggregate stability,and amount of water held in soil increase and bulk density decreases.Mostly,biochar increases soil pH and,thus,influences nutrient availability for plants.Biochar also alters soil biological properties by increasing microbial populations,enzyme activity,soil respiration,and microbial biomass.Finally,nutrient use efficiency and nutrient uptake improve with the application of biochar to soil.Thus,biochar can be a potential nutrient reservoir for plants and a good amendment to improve soil properties.展开更多
To investigate the effect of arsenic on spermatogenesis. Methods: Mature (4 months old) Wistar rats were intraperitoneally administered sodium arsenite at doses of 4, 5 or 6 mg-kg^-day1 for 26 days. Different varietie...To investigate the effect of arsenic on spermatogenesis. Methods: Mature (4 months old) Wistar rats were intraperitoneally administered sodium arsenite at doses of 4, 5 or 6 mg-kg^-day1 for 26 days. Different varieties of germ cells at stage VII seminiferous epithelium cycle, namely, type A spermatogonia (ASg), preleptotene spermatocytes (pLSc), midpachytene spermatocytes (mPSc) and step 7 spermatids (7Sd) were quantitatively evaluated, along with radioimmunoassay of plasma follicle-stimulating hormone (FSH), lutuneizing hormone (LH), testosterone and assessment of the epididymal sperm count. Results: In the 5 and 6 mg/kg groups, there were significant dose-dependent decreases in the accessory sex organ weights, epididymal sperm count and plasma concentrations of LH, FSH and testosterone with massive degeneration of all the germ cells at stage VII. The changes were insignificant in the 4 mg/kg group. Conclusion: Arsenite has a suppressive influence on spermatogenesis and gonadotrophin and testosterone release in rats.展开更多
The yield of cereal crops such as sorghum(Sorghum bicolor L.Moench)depends on the distribution of crop-heads in varying branching arrangements.Therefore,counting the head number per unit area is critical for plant bre...The yield of cereal crops such as sorghum(Sorghum bicolor L.Moench)depends on the distribution of crop-heads in varying branching arrangements.Therefore,counting the head number per unit area is critical for plant breeders to correlate with the genotypic variation in a specific breeding field.However,measuring such phenotypic traitsmanually is an extremely labor-intensive process and suffers from low efficiency and human errors.Moreover,the process is almost infeasible for large-scale breeding plantations or experiments.Machine learning-based approaches like deep convolutional neural network(CNN)based object detectors are promising tools for efficient object detection and counting.However,a significant limitation of such deep learningbased approaches is that they typically require a massive amount of hand-labeled images for training,which is still a tedious process.Here,we propose an active learning inspired weakly supervised deep learning framework for sorghum head detection and counting from UAV-based images.We demonstrate that it is possible to significantly reduce human labeling effort without compromising final model performance(R^(2)between human count and machine count is 0.88)by using a semitrained CNN model(i.e.,trained with limited labeled data)to perform synthetic annotation.In addition,we also visualize key features that the network learns.This improves trustworthiness by enabling users to better understand and trust the decisions that the trained deep learning model makes.展开更多
Non-alcoholic fatty liver disease(NAFLD)and non-alcoholic steatohepatitis(NASH)are national and global epidemics.The disease is characterized by a spectrum of liver steatosis(fat deposition),inflammation(in NASH)and f...Non-alcoholic fatty liver disease(NAFLD)and non-alcoholic steatohepatitis(NASH)are national and global epidemics.The disease is characterized by a spectrum of liver steatosis(fat deposition),inflammation(in NASH)and fibrosis.NAFLD and specifically NASH can lead to cirrhosis,which carry risks of progression to portal hypertension and hepatocellular carcinoma(HCC).NASH is also associated with higher mortality from cardiovascular causes.Most of the data for NAFLD has been obtained from the perspective of developed nations,although the disease is increasing and threatening to reach epidemic proportions across the world.Emerging data is notable for high prevalence of NAFLD in South Asian populations,presumably resulting from a combination of underlying genetic polymorphisms and changes in socio-economic status.It is also notable that an‘Asian Paradox'has been defined for NAFLD based upon the observation of lower than predefined body mass index(BMI),otherwise termed as"lean NAFLD",among this population.Yet,data remains limited in regards to the characteristics of NAFLD/NASH in this population.In this article,we present a review of the literature and discuss the prevalence,associated risk factors and burden of HCC in South Asians with NAFLD.展开更多
Objective:To evaluate the antimicrobial efficacy of berberine,a plant alkaloid.Methods:Five multi-drug resistant(MDR) STEC/EPEC and five MDR ETEC isolates from yaks with haemorrhagic diarrhoea were selected for the ...Objective:To evaluate the antimicrobial efficacy of berberine,a plant alkaloid.Methods:Five multi-drug resistant(MDR) STEC/EPEC and five MDR ETEC isolates from yaks with haemorrhagic diarrhoea were selected for the study.Antibacterial activity of berberine was evaluated by broth dilution and disc diffusion methods.The binding kinetics of berberine to DNA and protein was also enumerated.Results:For both categories of enterovirulent Escherichia coli(E.roli) isolates, berberine displayed the antibaclerial effect in a dose dependent manner.The MIC<sub>50</sub> of berberine chloride for STEC/EPEC isolates varied from 2.07μM to 3.6μM with a mean of(2.95±0.33)μM where as for ETEC strains it varied from 1.75 to 1.96μM with a mean of(1.87±0.03)μM. Berberine bind more tightly with double helix DNA with Bmax and Kd of(24.68±2.62) and(357.8±57.8),respectively.Berberine reacted with protein in comparatively loose manner with Bmax and Kd of(18.9±3.83) and 【286.2±113.6),respectively.Conclusions:The results indicate clearly that berberine may serve as a good antibacterial against multi drug resistant E.coli.展开更多
Graphene oxide (GO) possesses excellent mechanical strength,biocompatibility,colloidal stability,large surface area and high adsorption capability.It has driven to cancer nanotechnology to defeat cancer therapy obstac...Graphene oxide (GO) possesses excellent mechanical strength,biocompatibility,colloidal stability,large surface area and high adsorption capability.It has driven to cancer nanotechnology to defeat cancer therapy obstacles,via integration into three-dimensional (3D) hydrogel network with biocompatible polymers as nanocomposites carrier,and controllable release of anticancer drugs.Specifically,the surface of GO affords π-π stacking and hydrophilic interactions with anticancer drugs.Additionally,modification of GO with various polymers such as natural and synthetic polymers enhances its biodegradability,drug loading,and target delivery.In this review,GO based hydrogels research accomplishments are reviewed on the aspects of crosslinking strategies,preparation methods,the model drug,polymer conjugation and modification with targeting ligands.Moreover,swelling kinetics,drug release profile and biological activity in vivo and in vitro are discussed.The biocompatibility of GO based hydrogels is also discussed from the perspective of its nano-bio interfaces.Apart from that,the clinical potential of GO based hydrogels and its major challenges are addressed in detail.Finally,this review concludes with a summary and invigorating future perspectives of GO based hydrogels for anticancer drug delivery.It is anticipated that this review can stimulate a new research gateway to facilitate the development of anticancer drug delivery by harnessing the unique properties of GO based hydrogels,such as large surface area,chemical purity,high loading capacity of drug,chemical stability,and the nature of lipophilic for cell membrane penetration.展开更多
Immune dysfunction is well documented during tumor progression and likely contributes to tumor immune evasion.CD81 cytotoxic T lymphocytes(CTLs)are involved in antigen-specific tumor destruction and CD41 T cells are e...Immune dysfunction is well documented during tumor progression and likely contributes to tumor immune evasion.CD81 cytotoxic T lymphocytes(CTLs)are involved in antigen-specific tumor destruction and CD41 T cells are essential for helping this CD81 T cell-dependent tumor eradication.Tumors often target and inhibit T-cell function to escape from immune surveillance.This dysfunction includes loss of effector and memory T cells,bias towards type 2 cytokines and expansion of T regulatory(Treg)cells.Curcumin has previously been shown to have antitumor activity and some research has addressed the immunoprotective potential of this plant-derived polyphenol in tumor-bearing hosts.Here we examined the role of curcumin in the prevention of tumor-induced dysfunction of T cell-based immune responses.We observed severe loss of both effector and memory T-cell populations,downregulation of type 1 and upregulation of type 2 immune responses and decreased proliferation of effector T cells in the presence of tumors.Curcumin,in turn,prevented this loss of T cells,expanded central memory T cell(TCM)/effector memory T cell(TEM)populations,reversed the type 2 immune bias and attenuated the tumor-induced inhibition of T-cell proliferation in tumor-bearing hosts.Further investigation revealed that tumor burden upregulated Treg cell populations and stimulated the production of the immunosuppressive cytokines transforming growth factor(TGF)-b and IL-10 in these cells.Curcumin,however,inhibited the suppressive activity of Treg cells by downregulating the production of TGF-b and IL-10 in these cells.More importantly,curcumin treatment enhanced the ability of effector T cells to kill cancer cells.Overall,our observations suggest that the unique properties of curcumin may be exploited for successful attenuation of tumor-induced suppression of cell-mediated immune responses.展开更多
This article outlines an Effective Method for Automatic Electric Vehicle Charging Stations in a Static Environment. It consists of investigated wireless transformer structures with various ferrite forms. WPT technolog...This article outlines an Effective Method for Automatic Electric Vehicle Charging Stations in a Static Environment. It consists of investigated wireless transformer structures with various ferrite forms. WPT technology has rapidly advanced in the last few years. At kilowatt power levels, the transmission distance grows from a few millimeters to several hundred millimeters with a grid to load efficiency greater than 90%. The improvements have made the WPT more appealing for electric vehicle (EV) charging applications in both static and dynamic charging scenarios. Static and dynamic WEVCS, two of the main applications, are described, and current developments with features from research facilities, academic institutions, and businesses are noted. Additionally, forthcoming concepts based WEVCS are analyzed and examined, including “dynamic” wireless charging systems (WCS). A dynamic wireless power transfer (DWPT) system, which can supply electricity to moving EVs, is one of the feasible alternatives. The moving secondary coil is part of the dynamic WPT system, which also comprises of many fixed groundside (primary) coils. An equivalent circuit between the stationary system and the dynamic WPT system that results from the stationary system is demonstrated by theoretical investigations. The dynamic WPT system’s solenoid coils outperform circular coils in terms of flux distribution and misalignment. The WPT-related EV wireless charging technologies were examined in this study. WPT can assist EVs in overcoming their restrictions on cost, range, and charging time.展开更多
Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, hos...Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, host endophytic bacteria that produce bioactive compounds. Understanding antibiotic resistance dynamics in these bacteria is vital for human health and antibiotic efficacy preservation. In this study, we investigated antibiotic resistance profiles in endophytic bacteria from five medicinal plants: Thankuni, Neem, Aparajita, Joba, and Snake plant. We isolated and characterized 113 endophytic bacteria, with varying resistance patterns observed against multiple antibiotics. Notably, 53 strains were multidrug-resistant (MDR), with 14 exhibiting extensive drug resistance (XDR). Thankuni-associated bacteria displayed 44% MDR and 11% XDR, while Neem-associated bacteria showed higher resistance (60% MDR, 13% XDR). Aparajita-associated bacteria had lower resistance (22% MDR, 6% XDR), whereas Joba-associated bacteria exhibited substantial resistance (54% MDR, 14% XDR). Snake plant-associated bacteria showed 7% MDR and 4% XDR. Genus-specific distribution revealed Bacillus (47%), Staphylococcus (21%), and Klebsiella (11%) as major contributors to MDR. Our findings highlight diverse drug resistance patterns among plant-associated bacteria and underscore the complexity of antibiotic resistance dynamics in diverse plant environments. Identification of XDR strains emphasizes the severity of the antibiotic resistance problem, warranting further investigation into contributing factors.展开更多
Background: As the half-life of intact parathyroid hormone (iPTH) is very low, it reflects parathyroid insufficiency within minutes to hours after total thyroidectomy. Therefore, iPTH level assessment in the postopera...Background: As the half-life of intact parathyroid hormone (iPTH) is very low, it reflects parathyroid insufficiency within minutes to hours after total thyroidectomy. Therefore, iPTH level assessment in the postoperative period can be used to predict the development of hypocalcaemia. The optimal time point to measure serum iPTH is important for the accurate prediction of hypocalcaemia. Aim: This paper aims to evaluate the ability of iPTH as an early predictive marker of hypocalcaemia and determine which time iPTH is more able to predict postoperative hypocalcaemia. Method: This prospective observational study was conducted in the Department of Otolaryngology-Head & Neck Surgery, BSMMU, Dhaka, from July 2020 to December 2021, with 67 patients who underwent total thyroidectomy. iPTH levels were measured on the day before the operation and at 1 hour, 4 hours, and 24 hours after the operation. S.calcium levels were measured on the day before the operation and 1<sup>st</sup> postoperative day. All the data were compiled and sorted properly and were analyzed statistically. Results: Postoperative hypocalcaemia developed in 18 cases, with an incidence of 26.9%. Pearson correlation showed a significant correlation between postoperative iPTH at 1 hr, 4 h, and 24 hr with 1st postoperative calcium value. The Receiver operating characteristic (ROC) curve was processed for the postoperative iPTH at 1 hr, 4 h, and 24 hr. The sensitivity, specificity, cut-off value, and mean AUC found 93.9%, 94.4%, ≤14.0, 0.988;95.9%, 94.4%, ≤09.5, 0.993 and 91.8%, 94.4%, ≤11.0, 0.993 respectively. Conclusion: iPTH can be used as an early predictor of post-thy-roidectomy hypocalcaemia. 4 hr iPTH showed more sensitivity and specificity for a cut-off value near the laboratory reference range.展开更多
Traumatic brain injury(TBI)is an acquired injury of the brain caused by the impact of external forces on the brain(Maas et al.,2008).It is a major cause of death and disability among people of all ages(Maas et al.,200...Traumatic brain injury(TBI)is an acquired injury of the brain caused by the impact of external forces on the brain(Maas et al.,2008).It is a major cause of death and disability among people of all ages(Maas et al.,2008).The primary mechanical injury to the brain initiates a cascade of secondary biochemical events that lead to acute and chronic neurodegeneration and activation of inflammatory pathways(Maas et al.,2008).Both brain-resident microglia and blood-derived myeloid cells-macrophages and monocytes that infiltrate the brain due to injury-induced blood-brain barrier damage,contribute to the inflammatory responses after TBI(Morganti et al.,2015).展开更多
The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃...The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃, agitation of 150 r/min, and pH of 5 were chosen as center point from the previous study of fungal treatment. The experimental data on chemical oxygen demand (COD) removal (%) were fitted into a quadratic polynomial model using multiple regression analysis. The optimum process conditions were determined by analyzing response surface three-dimensional surface plot and contour plot and by solving the regression model equation with Design Expert software. Box-Behnken design technique under RSM was used to optimize their interactions, which showed that an incubation temperature of 32.5℃, agitation of 105 r/min, and pH of 5.5 were the best conditions. Under these conditions, the maximum predicted yield of COD removal was 98.43%. These optimum conditions were used to evaluate the trail experiment, and the maximum yield of COD removal was recorded as 98.5%.展开更多
Lead contamination in water is a widespread problem throughout the world and results from industrial use and processing of lead ore. Bio-availability of lead can be hazardous for children and causes mental retardation...Lead contamination in water is a widespread problem throughout the world and results from industrial use and processing of lead ore. Bio-availability of lead can be hazardous for children and causes mental retardation. The use of lead free petrol is one measure to check this pollution, but this heavy metal is also present in industrial effluents and need to be removed before these effluents are discharged to natural land or water and as well as to the environment. Using bioremediation, bacteria could render lead non-bioavailable would provide an alternative option for detoxifying this contaminant in the environment. The property of some species of bacteria and algae, to extract metals from their surroundings, has been utilized to purify industrial effluents. The first step in devising a bioremediation strategy is to identify candidate bacterial strains capable of modifying the contaminant. Biotechnological approaches are recommended for extraction of metal forms can be grown in ponds where effluents (rich in heavy metals) are discharged. The microbes will extract the heavy metals and sequester them inside their cell membranes. The goal of the present study was to examine the capacity of lead resistant bacteria and bioremediation of lead contaminated water.展开更多
As professors are subjected to teaching their classes online due to the recent COVID-19, our local Hong Kong students find it difficult to consult their teachers, and ultimately would fail to achieve the intended lear...As professors are subjected to teaching their classes online due to the recent COVID-19, our local Hong Kong students find it difficult to consult their teachers, and ultimately would fail to achieve the intended learning outcomes, especially for practical-based subjects. In this research, students having online classes of a practical-based fabric design subject were encouraged to self-study from Open Educational Resource (OER) materials for a further and better understanding of their subject. Additionally, online materials were developed to improve students’ understanding via skill of digital literacy. Their learning progress was evaluated and compared to the face-to-face version. The majority of students found online classes combined with self-studying OER materials, potentially be a substitute for face-to-face classes. Most of the students further opined different OER videos assisted them without any face-to-face instructions in practical works, to develop new fabric samples from the inspiration. Analysis of test results, and comparison of students’ final grades with different learning modes, supported these phenomena.展开更多
Curcumin, a yellow pigment and principal polyphenolic Curcuminoid obtained from the turmeric rhizome Curcuma longa, is commonly used as a food-coloring agent. Studies suggest that curcumin has a wide range of benefici...Curcumin, a yellow pigment and principal polyphenolic Curcuminoid obtained from the turmeric rhizome Curcuma longa, is commonly used as a food-coloring agent. Studies suggest that curcumin has a wide range of beneficial properties e.g., anti-inflammatory, antioxidant, anti-cancer, anti-proliferative, anti-fungal and anti-microbial. These pleiotropic activities prompted several research groups to elucidate the role of curcumin in Helicobacter pylori(H. pylori) infection. This is the first review with this heading where we discussed regarding the role of curcumin as an anti-H. pylori agent along with its potential in other gastrointestinal diseases. Based on several in vitro, early cell culture, animal research and few pre-clinical trials, curcumin projected as a potential therapeutic candidate against H. pylori mediated gastric pathogenesis. This review sheds light on the anti-H. pylori effects of curcumin in different models with meticulous emphasis on its anti-oxidant, anti-inflammatory and anti-carcinogenic effects as well as some critical signaling and effecter molecules. Remarkably, non-toxic molecule curcumin fulfills the characteristics for an ideal chemopreventive agent against H. pylori mediated gastric carcinogenesis but the foremost challenge is to obtain the optimum therapeutic levels of curcumin, due to its low solubility and poor bioavailability. Further, we have discussed about the possibilities for improving its efficacy and bioavailability. Lastly, we concluded with the anticipation that in near future curcumin may be used to develop a therapeutic drug against H. pylori mediated gastric ailments through improved formulation or delivery systems, facilitating its enhanced absorption and cellular uptake.展开更多
BACKGROUND Prediabetes is a well-established risk factor for major adverse cardiac and cerebrovascular events(MACCE).However,the relationship between prediabetes and MACCE in atrial fibrillation(AF)patients has not be...BACKGROUND Prediabetes is a well-established risk factor for major adverse cardiac and cerebrovascular events(MACCE).However,the relationship between prediabetes and MACCE in atrial fibrillation(AF)patients has not been extensively studied.Therefore,this study aimed to establish a link between prediabetes and MACCE in AF patients.AIM To investigate a link between prediabetes and MACCE in AF patients.METHODS We used the National Inpatient Sample(2019)and relevant ICD-10 CM codes to identify hospitalizations with AF and categorized them into groups with and without prediabetes,excluding diabetics.The primary outcome was MACCE(all-cause inpatient mortality,cardiac arrest including ventricular fibrillation,and stroke)in AF-related hospitalizations.RESULTS Of the 2965875 AF-related hospitalizations for MACCE,47505(1.6%)were among patients with prediabetes.The prediabetes cohort was relatively younger(median 75 vs 78 years),and often consisted of males(56.3%vs 51.4%),blacks(9.8%vs 7.9%),Hispanics(7.3%vs 4.3%),and Asians(4.7%vs 1.6%)than the non-prediabetic cohort(P<0.001).The prediabetes group had significantly higher rates of hypertension,hyperlipidemia,smoking,obesity,drug abuse,prior myocardial infarction,peripheral vascular disease,and hyperthyroidism(all P<0.05).The prediabetes cohort was often discharged routinely(51.1%vs 41.1%),but more frequently required home health care(23.6%vs 21.0%)and had higher costs.After adjusting for baseline characteristics or comorbidities,the prediabetes cohort with AF admissions showed a higher rate and significantly higher odds of MACCE compared to the non-prediabetic cohort[18.6%vs 14.7%,odds ratio(OR)1.34,95%confidence interval 1.26-1.42,P<0.001].On subgroup analyses,males had a stronger association(aOR 1.43)compared to females(aOR 1.22),whereas on the race-wise comparison,Hispanics(aOR 1.43)and Asians(aOR 1.36)had a stronger association with MACCE with prediabetes vs whites(aOR 1.33)and blacks(aOR 1.21).CONCLUSION This population-based study found a significant association betw展开更多
Phytic acid is the principal storage form of phosphorus in plant seeds and an essential signalling molecule in several regulatory processes of plant development.However,it is known as an anti-nutrient compound owing t...Phytic acid is the principal storage form of phosphorus in plant seeds and an essential signalling molecule in several regulatory processes of plant development.However,it is known as an anti-nutrient compound owing to its potent chelating property.Thus,reducing the phytic acid content in crops is desirable.Studies involving regulation of MIPS and IPK1 genes to generate low phytate rice have been reported earlier.However,the functional significance of OsITPK and the effect of its down-regulation on phytic acid content and the associated pleiotropic effects on rice have not yet been investigated.In this study,tissue specific RNA interference(RNAi)-mediated down-regulation of a major ITPK homolog(OsITP5/6K-1)resulted in 46.2%decrease in phytic acid content of T2 transgenic seeds with a subsequent 3-fold enhancement in the inorganic phosphorus content.Silencing of OsITP5/6K-1 altered the transcript levels of essential phytic acid pathway genes,without significantly affecting the transcript levels of other OsITPK homologs.Furthermore,the mapping of elements through X-ray microfluorescence analysis revealed significant changes in the spatial distribution pattern and translocation of elements in low phytate seeds.Additionally,low phytate polished seeds exhibited 1.3-fold and 1.6-fold enhancement in iron and zinc content in the grain endosperm,respectively.Silencing of OsITP5/6K-1 also altered the amino acid and myo-inositol content of the transgenic seeds.Our results successfully established that RNAi-mediated silencing of OsITP5/6K-1 gene significantly reduced the phytate levels in seeds without hampering the germination potential of seeds and plant growth.The present study provided an insight into the mechanism of phytic acid biosynthesis pathway.展开更多
基金Supported in part by the Offices of NP and HEP within the U.S.DOE Office of Sciencethe U.S.NSF+18 种基金the Sloan Foundationthe DFG cluster of excellence‘Origin and Structure of the Universe’of Germany,CNRS/IN2P3STFC and EPSRC of the United KingdomFAPESP CNPq of Brazil,Ministry of Ed.Sci.of the Russian FederationNNSFCCASMoSTMoE of ChinaGA and MSMT of the Czech RepublicFOM and NWO of the NetherlandsDAEDSTCSIR of IndiaPolish Ministry of Sci.Higher Ed.,Korea Research Foundation,Ministry of Sci.,Ed.Sports of the Rep.Of CroatiaRussian Ministry of Sci.and TechRos-Atom of Russia。
文摘Dihadron azimuthal correlations containing a high transverse momentum(pr)trigger particle are sensit-ive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium,ie.jet-quenching.Previous measurements revealed a strong modification to di-hadron azimuthal correlations in Au+Au collisions with respect to ptp and d+Au collisions.The modification in-creases with the collision centrality,suggesting a path-length or energy density dependence to the je-quenching ef-fect.This paper reports STAR measurements of dihadron azimuthal correlations in mid-central(20%-60%)Au+Au collisions at√^(S)NN=200 GeV as a function of the trigger particle's azimuthal angle relative to the event plane,Ф_(s)=|Ф_(t)-ψ_(Ep)|.The azimuthal correlation is studied as a function of both the trigger and associated particle pr.The subtractions of the combinatorial background and anisotropic flow,assuming Zero Yield At Minimum(ZYAM),are described.The correlation results are first discussed with subtraction of the even harmonic(elliptic and quadrangu-lar)flow backgrounds.The away-side correlation is strongly modifed,and the modification varies withФ_(s),with a double-peak structure for out-of-plane trigger particles.The near-side ridge(long range pseudo-rapidity△_(η)correla-tion)appears to drop with increasingФ_(s)while the jet-like component remains approximately constant.The correla-tion functions are further studied with the subtraction of odd harmonic triangular flow background arising from fluc-tuations.It is found that the triangular flow,while responsible for the majority of the amplitudes,is not sufficient to explain theφs-dependence of the ridge or the away-side double-peak structure.The dropping ridge withФ_(s)could be attributed to aФ_(s)-dependent lliptie anisotropy;however,the physics mechanism of the ridge remains an open ques-tion.Even with aФ_(s)-dependent elliptic flow,the away-side correlation structure is robust.These results,with exte
基金MZH acknowledges scholarship from the University of Newcastle,Australia,and Cooperative Research Centre for High Performance Soils(Soil CRC).
文摘Biochar,an environmentally friendly soil conditioner,is produced using several thermochemical processes.It has unique characteristics like high surface area,porosity,and surface charges.This paper reviews the fertilizer value of biochar,and its effects on soil properties,and nutrient use efficiency of crops.Biochar serves as an important source of plant nutrients,especially nitrogen in biochar produced from manures and wastes at low temperature(≤400℃).The phosphorus,potassium,and other nutrient contents are higher in manure/waste biochars than those in crop residues and woody biochars.The nutrient contents and pH of biochar are positively correlated with pyrolysis temperature,except for nitrogen content.Biochar improves the nutrient retention capacity of soil,which depends on porosity and surface charge of biochar.Biochar increases nitrogen retention in soil by reducing leaching and gaseous loss,and also increases phosphorus availability by decreasing the leaching process in soil.However,for potassium and other nutrients,biochar shows inconsistent(positive and negative)impacts on soil.After addition of biochar,porosity,aggregate stability,and amount of water held in soil increase and bulk density decreases.Mostly,biochar increases soil pH and,thus,influences nutrient availability for plants.Biochar also alters soil biological properties by increasing microbial populations,enzyme activity,soil respiration,and microbial biomass.Finally,nutrient use efficiency and nutrient uptake improve with the application of biochar to soil.Thus,biochar can be a potential nutrient reservoir for plants and a good amendment to improve soil properties.
文摘To investigate the effect of arsenic on spermatogenesis. Methods: Mature (4 months old) Wistar rats were intraperitoneally administered sodium arsenite at doses of 4, 5 or 6 mg-kg^-day1 for 26 days. Different varieties of germ cells at stage VII seminiferous epithelium cycle, namely, type A spermatogonia (ASg), preleptotene spermatocytes (pLSc), midpachytene spermatocytes (mPSc) and step 7 spermatids (7Sd) were quantitatively evaluated, along with radioimmunoassay of plasma follicle-stimulating hormone (FSH), lutuneizing hormone (LH), testosterone and assessment of the epididymal sperm count. Results: In the 5 and 6 mg/kg groups, there were significant dose-dependent decreases in the accessory sex organ weights, epididymal sperm count and plasma concentrations of LH, FSH and testosterone with massive degeneration of all the germ cells at stage VII. The changes were insignificant in the 4 mg/kg group. Conclusion: Arsenite has a suppressive influence on spermatogenesis and gonadotrophin and testosterone release in rats.
基金This study was partially funded by the CREST Program JPMJCR1512the SICORP Program Data Science Based Farming Support System for Sustainable Crop Production under Climatic Change of the Japan Science and Technology Agency+1 种基金USDA-NIFA Grant no.2017-67007-26151Australian Government through the Australian Research Council Cen tre of Excellence for Translational Photosynthesis and by the partners in that Centre:CSIRO,Australian National Uni-versity,The University of Queensland,University of Sydney,Western Sydney University,and International Rice Research Institute.
文摘The yield of cereal crops such as sorghum(Sorghum bicolor L.Moench)depends on the distribution of crop-heads in varying branching arrangements.Therefore,counting the head number per unit area is critical for plant breeders to correlate with the genotypic variation in a specific breeding field.However,measuring such phenotypic traitsmanually is an extremely labor-intensive process and suffers from low efficiency and human errors.Moreover,the process is almost infeasible for large-scale breeding plantations or experiments.Machine learning-based approaches like deep convolutional neural network(CNN)based object detectors are promising tools for efficient object detection and counting.However,a significant limitation of such deep learningbased approaches is that they typically require a massive amount of hand-labeled images for training,which is still a tedious process.Here,we propose an active learning inspired weakly supervised deep learning framework for sorghum head detection and counting from UAV-based images.We demonstrate that it is possible to significantly reduce human labeling effort without compromising final model performance(R^(2)between human count and machine count is 0.88)by using a semitrained CNN model(i.e.,trained with limited labeled data)to perform synthetic annotation.In addition,we also visualize key features that the network learns.This improves trustworthiness by enabling users to better understand and trust the decisions that the trained deep learning model makes.
文摘Non-alcoholic fatty liver disease(NAFLD)and non-alcoholic steatohepatitis(NASH)are national and global epidemics.The disease is characterized by a spectrum of liver steatosis(fat deposition),inflammation(in NASH)and fibrosis.NAFLD and specifically NASH can lead to cirrhosis,which carry risks of progression to portal hypertension and hepatocellular carcinoma(HCC).NASH is also associated with higher mortality from cardiovascular causes.Most of the data for NAFLD has been obtained from the perspective of developed nations,although the disease is increasing and threatening to reach epidemic proportions across the world.Emerging data is notable for high prevalence of NAFLD in South Asian populations,presumably resulting from a combination of underlying genetic polymorphisms and changes in socio-economic status.It is also notable that an‘Asian Paradox'has been defined for NAFLD based upon the observation of lower than predefined body mass index(BMI),otherwise termed as"lean NAFLD",among this population.Yet,data remains limited in regards to the characteristics of NAFLD/NASH in this population.In this article,we present a review of the literature and discuss the prevalence,associated risk factors and burden of HCC in South Asians with NAFLD.
文摘Objective:To evaluate the antimicrobial efficacy of berberine,a plant alkaloid.Methods:Five multi-drug resistant(MDR) STEC/EPEC and five MDR ETEC isolates from yaks with haemorrhagic diarrhoea were selected for the study.Antibacterial activity of berberine was evaluated by broth dilution and disc diffusion methods.The binding kinetics of berberine to DNA and protein was also enumerated.Results:For both categories of enterovirulent Escherichia coli(E.roli) isolates, berberine displayed the antibaclerial effect in a dose dependent manner.The MIC<sub>50</sub> of berberine chloride for STEC/EPEC isolates varied from 2.07μM to 3.6μM with a mean of(2.95±0.33)μM where as for ETEC strains it varied from 1.75 to 1.96μM with a mean of(1.87±0.03)μM. Berberine bind more tightly with double helix DNA with Bmax and Kd of(24.68±2.62) and(357.8±57.8),respectively.Berberine reacted with protein in comparatively loose manner with Bmax and Kd of(18.9±3.83) and 【286.2±113.6),respectively.Conclusions:The results indicate clearly that berberine may serve as a good antibacterial against multi drug resistant E.coli.
文摘Graphene oxide (GO) possesses excellent mechanical strength,biocompatibility,colloidal stability,large surface area and high adsorption capability.It has driven to cancer nanotechnology to defeat cancer therapy obstacles,via integration into three-dimensional (3D) hydrogel network with biocompatible polymers as nanocomposites carrier,and controllable release of anticancer drugs.Specifically,the surface of GO affords π-π stacking and hydrophilic interactions with anticancer drugs.Additionally,modification of GO with various polymers such as natural and synthetic polymers enhances its biodegradability,drug loading,and target delivery.In this review,GO based hydrogels research accomplishments are reviewed on the aspects of crosslinking strategies,preparation methods,the model drug,polymer conjugation and modification with targeting ligands.Moreover,swelling kinetics,drug release profile and biological activity in vivo and in vitro are discussed.The biocompatibility of GO based hydrogels is also discussed from the perspective of its nano-bio interfaces.Apart from that,the clinical potential of GO based hydrogels and its major challenges are addressed in detail.Finally,this review concludes with a summary and invigorating future perspectives of GO based hydrogels for anticancer drug delivery.It is anticipated that this review can stimulate a new research gateway to facilitate the development of anticancer drug delivery by harnessing the unique properties of GO based hydrogels,such as large surface area,chemical purity,high loading capacity of drug,chemical stability,and the nature of lipophilic for cell membrane penetration.
基金supported by grants from the Council for Scientific and Industrial Research and the Indian Council of Medical Research,Government of India.
文摘Immune dysfunction is well documented during tumor progression and likely contributes to tumor immune evasion.CD81 cytotoxic T lymphocytes(CTLs)are involved in antigen-specific tumor destruction and CD41 T cells are essential for helping this CD81 T cell-dependent tumor eradication.Tumors often target and inhibit T-cell function to escape from immune surveillance.This dysfunction includes loss of effector and memory T cells,bias towards type 2 cytokines and expansion of T regulatory(Treg)cells.Curcumin has previously been shown to have antitumor activity and some research has addressed the immunoprotective potential of this plant-derived polyphenol in tumor-bearing hosts.Here we examined the role of curcumin in the prevention of tumor-induced dysfunction of T cell-based immune responses.We observed severe loss of both effector and memory T-cell populations,downregulation of type 1 and upregulation of type 2 immune responses and decreased proliferation of effector T cells in the presence of tumors.Curcumin,in turn,prevented this loss of T cells,expanded central memory T cell(TCM)/effector memory T cell(TEM)populations,reversed the type 2 immune bias and attenuated the tumor-induced inhibition of T-cell proliferation in tumor-bearing hosts.Further investigation revealed that tumor burden upregulated Treg cell populations and stimulated the production of the immunosuppressive cytokines transforming growth factor(TGF)-b and IL-10 in these cells.Curcumin,however,inhibited the suppressive activity of Treg cells by downregulating the production of TGF-b and IL-10 in these cells.More importantly,curcumin treatment enhanced the ability of effector T cells to kill cancer cells.Overall,our observations suggest that the unique properties of curcumin may be exploited for successful attenuation of tumor-induced suppression of cell-mediated immune responses.
文摘This article outlines an Effective Method for Automatic Electric Vehicle Charging Stations in a Static Environment. It consists of investigated wireless transformer structures with various ferrite forms. WPT technology has rapidly advanced in the last few years. At kilowatt power levels, the transmission distance grows from a few millimeters to several hundred millimeters with a grid to load efficiency greater than 90%. The improvements have made the WPT more appealing for electric vehicle (EV) charging applications in both static and dynamic charging scenarios. Static and dynamic WEVCS, two of the main applications, are described, and current developments with features from research facilities, academic institutions, and businesses are noted. Additionally, forthcoming concepts based WEVCS are analyzed and examined, including “dynamic” wireless charging systems (WCS). A dynamic wireless power transfer (DWPT) system, which can supply electricity to moving EVs, is one of the feasible alternatives. The moving secondary coil is part of the dynamic WPT system, which also comprises of many fixed groundside (primary) coils. An equivalent circuit between the stationary system and the dynamic WPT system that results from the stationary system is demonstrated by theoretical investigations. The dynamic WPT system’s solenoid coils outperform circular coils in terms of flux distribution and misalignment. The WPT-related EV wireless charging technologies were examined in this study. WPT can assist EVs in overcoming their restrictions on cost, range, and charging time.
文摘Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, host endophytic bacteria that produce bioactive compounds. Understanding antibiotic resistance dynamics in these bacteria is vital for human health and antibiotic efficacy preservation. In this study, we investigated antibiotic resistance profiles in endophytic bacteria from five medicinal plants: Thankuni, Neem, Aparajita, Joba, and Snake plant. We isolated and characterized 113 endophytic bacteria, with varying resistance patterns observed against multiple antibiotics. Notably, 53 strains were multidrug-resistant (MDR), with 14 exhibiting extensive drug resistance (XDR). Thankuni-associated bacteria displayed 44% MDR and 11% XDR, while Neem-associated bacteria showed higher resistance (60% MDR, 13% XDR). Aparajita-associated bacteria had lower resistance (22% MDR, 6% XDR), whereas Joba-associated bacteria exhibited substantial resistance (54% MDR, 14% XDR). Snake plant-associated bacteria showed 7% MDR and 4% XDR. Genus-specific distribution revealed Bacillus (47%), Staphylococcus (21%), and Klebsiella (11%) as major contributors to MDR. Our findings highlight diverse drug resistance patterns among plant-associated bacteria and underscore the complexity of antibiotic resistance dynamics in diverse plant environments. Identification of XDR strains emphasizes the severity of the antibiotic resistance problem, warranting further investigation into contributing factors.
文摘Background: As the half-life of intact parathyroid hormone (iPTH) is very low, it reflects parathyroid insufficiency within minutes to hours after total thyroidectomy. Therefore, iPTH level assessment in the postoperative period can be used to predict the development of hypocalcaemia. The optimal time point to measure serum iPTH is important for the accurate prediction of hypocalcaemia. Aim: This paper aims to evaluate the ability of iPTH as an early predictive marker of hypocalcaemia and determine which time iPTH is more able to predict postoperative hypocalcaemia. Method: This prospective observational study was conducted in the Department of Otolaryngology-Head & Neck Surgery, BSMMU, Dhaka, from July 2020 to December 2021, with 67 patients who underwent total thyroidectomy. iPTH levels were measured on the day before the operation and at 1 hour, 4 hours, and 24 hours after the operation. S.calcium levels were measured on the day before the operation and 1<sup>st</sup> postoperative day. All the data were compiled and sorted properly and were analyzed statistically. Results: Postoperative hypocalcaemia developed in 18 cases, with an incidence of 26.9%. Pearson correlation showed a significant correlation between postoperative iPTH at 1 hr, 4 h, and 24 hr with 1st postoperative calcium value. The Receiver operating characteristic (ROC) curve was processed for the postoperative iPTH at 1 hr, 4 h, and 24 hr. The sensitivity, specificity, cut-off value, and mean AUC found 93.9%, 94.4%, ≤14.0, 0.988;95.9%, 94.4%, ≤09.5, 0.993 and 91.8%, 94.4%, ≤11.0, 0.993 respectively. Conclusion: iPTH can be used as an early predictor of post-thy-roidectomy hypocalcaemia. 4 hr iPTH showed more sensitivity and specificity for a cut-off value near the laboratory reference range.
基金supported by NIH funding(R01NS091218 and R01NS115876)to MML.
文摘Traumatic brain injury(TBI)is an acquired injury of the brain caused by the impact of external forces on the brain(Maas et al.,2008).It is a major cause of death and disability among people of all ages(Maas et al.,2008).The primary mechanical injury to the brain initiates a cascade of secondary biochemical events that lead to acute and chronic neurodegeneration and activation of inflammatory pathways(Maas et al.,2008).Both brain-resident microglia and blood-derived myeloid cells-macrophages and monocytes that infiltrate the brain due to injury-induced blood-brain barrier damage,contribute to the inflammatory responses after TBI(Morganti et al.,2015).
文摘The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃, agitation of 150 r/min, and pH of 5 were chosen as center point from the previous study of fungal treatment. The experimental data on chemical oxygen demand (COD) removal (%) were fitted into a quadratic polynomial model using multiple regression analysis. The optimum process conditions were determined by analyzing response surface three-dimensional surface plot and contour plot and by solving the regression model equation with Design Expert software. Box-Behnken design technique under RSM was used to optimize their interactions, which showed that an incubation temperature of 32.5℃, agitation of 105 r/min, and pH of 5.5 were the best conditions. Under these conditions, the maximum predicted yield of COD removal was 98.43%. These optimum conditions were used to evaluate the trail experiment, and the maximum yield of COD removal was recorded as 98.5%.
文摘Lead contamination in water is a widespread problem throughout the world and results from industrial use and processing of lead ore. Bio-availability of lead can be hazardous for children and causes mental retardation. The use of lead free petrol is one measure to check this pollution, but this heavy metal is also present in industrial effluents and need to be removed before these effluents are discharged to natural land or water and as well as to the environment. Using bioremediation, bacteria could render lead non-bioavailable would provide an alternative option for detoxifying this contaminant in the environment. The property of some species of bacteria and algae, to extract metals from their surroundings, has been utilized to purify industrial effluents. The first step in devising a bioremediation strategy is to identify candidate bacterial strains capable of modifying the contaminant. Biotechnological approaches are recommended for extraction of metal forms can be grown in ponds where effluents (rich in heavy metals) are discharged. The microbes will extract the heavy metals and sequester them inside their cell membranes. The goal of the present study was to examine the capacity of lead resistant bacteria and bioremediation of lead contaminated water.
文摘As professors are subjected to teaching their classes online due to the recent COVID-19, our local Hong Kong students find it difficult to consult their teachers, and ultimately would fail to achieve the intended learning outcomes, especially for practical-based subjects. In this research, students having online classes of a practical-based fabric design subject were encouraged to self-study from Open Educational Resource (OER) materials for a further and better understanding of their subject. Additionally, online materials were developed to improve students’ understanding via skill of digital literacy. Their learning progress was evaluated and compared to the face-to-face version. The majority of students found online classes combined with self-studying OER materials, potentially be a substitute for face-to-face classes. Most of the students further opined different OER videos assisted them without any face-to-face instructions in practical works, to develop new fabric samples from the inspiration. Analysis of test results, and comparison of students’ final grades with different learning modes, supported these phenomena.
文摘Curcumin, a yellow pigment and principal polyphenolic Curcuminoid obtained from the turmeric rhizome Curcuma longa, is commonly used as a food-coloring agent. Studies suggest that curcumin has a wide range of beneficial properties e.g., anti-inflammatory, antioxidant, anti-cancer, anti-proliferative, anti-fungal and anti-microbial. These pleiotropic activities prompted several research groups to elucidate the role of curcumin in Helicobacter pylori(H. pylori) infection. This is the first review with this heading where we discussed regarding the role of curcumin as an anti-H. pylori agent along with its potential in other gastrointestinal diseases. Based on several in vitro, early cell culture, animal research and few pre-clinical trials, curcumin projected as a potential therapeutic candidate against H. pylori mediated gastric pathogenesis. This review sheds light on the anti-H. pylori effects of curcumin in different models with meticulous emphasis on its anti-oxidant, anti-inflammatory and anti-carcinogenic effects as well as some critical signaling and effecter molecules. Remarkably, non-toxic molecule curcumin fulfills the characteristics for an ideal chemopreventive agent against H. pylori mediated gastric carcinogenesis but the foremost challenge is to obtain the optimum therapeutic levels of curcumin, due to its low solubility and poor bioavailability. Further, we have discussed about the possibilities for improving its efficacy and bioavailability. Lastly, we concluded with the anticipation that in near future curcumin may be used to develop a therapeutic drug against H. pylori mediated gastric ailments through improved formulation or delivery systems, facilitating its enhanced absorption and cellular uptake.
文摘BACKGROUND Prediabetes is a well-established risk factor for major adverse cardiac and cerebrovascular events(MACCE).However,the relationship between prediabetes and MACCE in atrial fibrillation(AF)patients has not been extensively studied.Therefore,this study aimed to establish a link between prediabetes and MACCE in AF patients.AIM To investigate a link between prediabetes and MACCE in AF patients.METHODS We used the National Inpatient Sample(2019)and relevant ICD-10 CM codes to identify hospitalizations with AF and categorized them into groups with and without prediabetes,excluding diabetics.The primary outcome was MACCE(all-cause inpatient mortality,cardiac arrest including ventricular fibrillation,and stroke)in AF-related hospitalizations.RESULTS Of the 2965875 AF-related hospitalizations for MACCE,47505(1.6%)were among patients with prediabetes.The prediabetes cohort was relatively younger(median 75 vs 78 years),and often consisted of males(56.3%vs 51.4%),blacks(9.8%vs 7.9%),Hispanics(7.3%vs 4.3%),and Asians(4.7%vs 1.6%)than the non-prediabetic cohort(P<0.001).The prediabetes group had significantly higher rates of hypertension,hyperlipidemia,smoking,obesity,drug abuse,prior myocardial infarction,peripheral vascular disease,and hyperthyroidism(all P<0.05).The prediabetes cohort was often discharged routinely(51.1%vs 41.1%),but more frequently required home health care(23.6%vs 21.0%)and had higher costs.After adjusting for baseline characteristics or comorbidities,the prediabetes cohort with AF admissions showed a higher rate and significantly higher odds of MACCE compared to the non-prediabetic cohort[18.6%vs 14.7%,odds ratio(OR)1.34,95%confidence interval 1.26-1.42,P<0.001].On subgroup analyses,males had a stronger association(aOR 1.43)compared to females(aOR 1.22),whereas on the race-wise comparison,Hispanics(aOR 1.43)and Asians(aOR 1.36)had a stronger association with MACCE with prediabetes vs whites(aOR 1.33)and blacks(aOR 1.21).CONCLUSION This population-based study found a significant association betw
文摘Phytic acid is the principal storage form of phosphorus in plant seeds and an essential signalling molecule in several regulatory processes of plant development.However,it is known as an anti-nutrient compound owing to its potent chelating property.Thus,reducing the phytic acid content in crops is desirable.Studies involving regulation of MIPS and IPK1 genes to generate low phytate rice have been reported earlier.However,the functional significance of OsITPK and the effect of its down-regulation on phytic acid content and the associated pleiotropic effects on rice have not yet been investigated.In this study,tissue specific RNA interference(RNAi)-mediated down-regulation of a major ITPK homolog(OsITP5/6K-1)resulted in 46.2%decrease in phytic acid content of T2 transgenic seeds with a subsequent 3-fold enhancement in the inorganic phosphorus content.Silencing of OsITP5/6K-1 altered the transcript levels of essential phytic acid pathway genes,without significantly affecting the transcript levels of other OsITPK homologs.Furthermore,the mapping of elements through X-ray microfluorescence analysis revealed significant changes in the spatial distribution pattern and translocation of elements in low phytate seeds.Additionally,low phytate polished seeds exhibited 1.3-fold and 1.6-fold enhancement in iron and zinc content in the grain endosperm,respectively.Silencing of OsITP5/6K-1 also altered the amino acid and myo-inositol content of the transgenic seeds.Our results successfully established that RNAi-mediated silencing of OsITP5/6K-1 gene significantly reduced the phytate levels in seeds without hampering the germination potential of seeds and plant growth.The present study provided an insight into the mechanism of phytic acid biosynthesis pathway.