期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effects of non-isothermal annealing on microstructure and mechanical properties of severely deformed aluminum samples:Modeling and experiment 被引量:2
1
作者 A.r.khodabakhshi M.KAZEMINEZHAD 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第6期1127-1137,共11页
In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-direc... In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-directional forging. Then, the samples were non-isothermally annealed up to 150, 200, 250, 300 and 350 ℃. The evolution of dislocation density and flow stress was studied via modeling of deformation and annealing stages. It was found that 2, 4 and 6 passes multi-directionally forged samples show thermal stability up to temperatures of 250, 250 and 300 ℃, respectively. Modeling results and experimental data were compared and a reasonable agreement was observed. It was noticed that 2 and 4 passes multi-directionally forged samples annealed non-isothermally up to 350 ℃ have a lower experimental flow stress in comparison with the flow stress achieved from the model.The underlying reason is that the proposed non-isothermal annealing model is based only on the intragranular dislocation density evolution, which only takes into account recovery and recrystallization phenomena. However, at 350℃ grain growth takes place in addition to recovery and recrystallization,which is the source of discrepancy between the modeling and experimental flow stress. 展开更多
关键词 severe plastic deformation multi-directional forging non-isothermal annealing dislocation density-based model microstructure mechanical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部