A method for obtaining a new type of surface acoustic wave(SAW)transducer operating at double frequency with a single-phase closed-loop lattice and a piezoelectric zinc oxide film is developed and experimentally inves...A method for obtaining a new type of surface acoustic wave(SAW)transducer operating at double frequency with a single-phase closed-loop lattice and a piezoelectric zinc oxide film is developed and experimentally investigated.A method for calculating such a transducer has been developed,its equivalent circuit has been compiled,taking into account propagation losses,losses in the metal film and the inductance of the connecting wires.When the frequency is doubled,the SAW attenuation per unit length increases.展开更多
Efficiency of the piezoelectric chemisensors may be considerably enhanced by use of zinc oxide nanorods as sensing elements.ZnO nanorod arrays being good piezoelectric materials possess large surface area,which provid...Efficiency of the piezoelectric chemisensors may be considerably enhanced by use of zinc oxide nanorods as sensing elements.ZnO nanorod arrays being good piezoelectric materials possess large surface area,which provides extra benefits for chemisorption and photodetection.Highly oriented nanorod arrays are typically prepared onto highly crystalline substrates,whereas the nanorods growth onto metal contacts meets significant technological difficulties.In this paper,we report on carbothermal,electrochemical,and hydrothermal techniques of ZnO nanorod arrays synthesis on metal contacts.The optical and structural properties of the obtained nanorods were studied using scanning electron microscopy,X-ray diffraction(XRD),Raman spectroscopy,and lumi-nescence spectroscopy.A reliable technique was developed for obtaining ohmic contact with the grown nanorods.I-U curves of prepared contact were studied.Carbothermal synthesis made it possible to obtain the most crystallinely perfect,homogeneous,and dense arrays of nanorods and control the concentration of point defects by changing the synthesis parameters over a wide range.The electrochemical synthesis demonstrated excellent results for synthesis of ZnO nanorods on the surface of resonator electrodes.展开更多
基金supported by Southern Federal University Research Project No.07/2020-06-MMthe 10th Anniversary International Conference on“Physics and Mechanics of New Materials and Their Applications”(PHENMA 2021-2022).
文摘A method for obtaining a new type of surface acoustic wave(SAW)transducer operating at double frequency with a single-phase closed-loop lattice and a piezoelectric zinc oxide film is developed and experimentally investigated.A method for calculating such a transducer has been developed,its equivalent circuit has been compiled,taking into account propagation losses,losses in the metal film and the inductance of the connecting wires.When the frequency is doubled,the SAW attenuation per unit length increases.
基金Financial support was provided by the Russian Foundation for Basic Research,project 20-07-00637 A.
文摘Efficiency of the piezoelectric chemisensors may be considerably enhanced by use of zinc oxide nanorods as sensing elements.ZnO nanorod arrays being good piezoelectric materials possess large surface area,which provides extra benefits for chemisorption and photodetection.Highly oriented nanorod arrays are typically prepared onto highly crystalline substrates,whereas the nanorods growth onto metal contacts meets significant technological difficulties.In this paper,we report on carbothermal,electrochemical,and hydrothermal techniques of ZnO nanorod arrays synthesis on metal contacts.The optical and structural properties of the obtained nanorods were studied using scanning electron microscopy,X-ray diffraction(XRD),Raman spectroscopy,and lumi-nescence spectroscopy.A reliable technique was developed for obtaining ohmic contact with the grown nanorods.I-U curves of prepared contact were studied.Carbothermal synthesis made it possible to obtain the most crystallinely perfect,homogeneous,and dense arrays of nanorods and control the concentration of point defects by changing the synthesis parameters over a wide range.The electrochemical synthesis demonstrated excellent results for synthesis of ZnO nanorods on the surface of resonator electrodes.