Along with laser-indirect(X-ray)-drive and magnetic-drive target concepts,laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion.In the United States,a national program...Along with laser-indirect(X-ray)-drive and magnetic-drive target concepts,laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion.In the United States,a national program has been established to demonstrate and understand the physics of laser direct drive.The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and lasereplasma interaction and coupling physics at the MJ scale at the National Ignition Facility.This article will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.展开更多
We will review some of the requirements for a laser that would be used with a laser fusion energy power plant, including frequency, spatial beam smoothing, bandwidth, temporal pulse shaping, efficiency, repetition rat...We will review some of the requirements for a laser that would be used with a laser fusion energy power plant, including frequency, spatial beam smoothing, bandwidth, temporal pulse shaping, efficiency, repetition rate, and reliability. The lowest risk and optimum approach uses a krypton fluoride gas laser. A diode-pumped solid-state laser is a possible contender.展开更多
文摘Along with laser-indirect(X-ray)-drive and magnetic-drive target concepts,laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion.In the United States,a national program has been established to demonstrate and understand the physics of laser direct drive.The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and lasereplasma interaction and coupling physics at the MJ scale at the National Ignition Facility.This article will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.
基金Stephen E. Bodner was partially supported by Berkeley Research AssociatesAndrew J. Schmitt and John D. Sethian were supported by the US DoE/NNSA
文摘We will review some of the requirements for a laser that would be used with a laser fusion energy power plant, including frequency, spatial beam smoothing, bandwidth, temporal pulse shaping, efficiency, repetition rate, and reliability. The lowest risk and optimum approach uses a krypton fluoride gas laser. A diode-pumped solid-state laser is a possible contender.