Compliant offshore structures are used for oil exploitation in deep water. Tension leg platform (TLP) is a suitable type for very deep water. The nonlinear dynamic response of TLP under random sea wave load is necessa...Compliant offshore structures are used for oil exploitation in deep water. Tension leg platform (TLP) is a suitable type for very deep water. The nonlinear dynamic response of TLP under random sea wave load is necessary for determining the maximum deformations and stresses. Accurate and reliable responses are needed for optimum design and control of the structure. In this paper nonlinear dynamic analysis of TLP is carried out in both time and frequency domains. The time history of random wave is generated based on Pierson-Moskowitz spectrum and acts on the structure in arbitrary direction. The hydrodynamic forces are calculated using the modified Morison equation according to Airy’s linear wave theory. The power spectral densities (PSDs) of displacements, velocities and accelerations are calculated from nonlinear responses. The focus of the paper is on the comprehen-sive interpretation of the responses of the structure related to wave excitation and structural characteristics. As an example a case study is investigated and numerical results are discussed.展开更多
The application of machine learning(ML)modelling in daylight prediction has been a promising approach for reliable and effective visual comfort assessment.Although many advancements have been made,no standardized ML m...The application of machine learning(ML)modelling in daylight prediction has been a promising approach for reliable and effective visual comfort assessment.Although many advancements have been made,no standardized ML modelling framework exists in daylight assessment.In this study,625 different building layouts were generated to model useful daylight illuminance(UDI).Two state-of-the-art ML algorithms,eXtreme Gradient Boosting(XGBoost)and random forest(RF),were employed to analyze UDI in four categories:UDI-f(fell short),UDI-s(supplementary),UDI-a(autonomous),and UDI-e(exceeded).A feature(internal finish)was introduced to the framework to better reflect real-world representation.The results show that XGBoost models predict UDI with a maximum accuracy of R^(2)=0.992.Compared to RF,the XGBoost ML models can significantly reduce prediction errors.Future research directions have been specified to advance the proposed framework by introducing new features and exploring new ML architectures to standardize ML applications in daylight prediction.展开更多
The development of damage detection techniques for offshore jacket structures is vital to prevent catastrophic events. This paper applies a frequency response based method for the purpose of structural health monitori...The development of damage detection techniques for offshore jacket structures is vital to prevent catastrophic events. This paper applies a frequency response based method for the purpose of structural health monitoring. In efforts to fulfill this task, concept of the minimum rank perturbation theory has been utilized. The present article introduces a promising methodology to select frequency points effectively. To achieve this goal, modal strain energy ratio of each member was evaluated at different natural frequencies of structure in order to identify the sensitive frequency domain for damage detection. The proposed methodology opens up the possibility of much greater detection efficiency. In addition, the performance of the proposed method was evaluated in relation to multiple damages. The aforementioned points are illustrated using the numerical study of a two dimensional jacket platform, and the results proved to be satisfactory utilizing the proposed methodology.展开更多
A friction damper device (FDD) is used for vibration control of an existing steel jacket platform under seismic excitation. First, the damping is presented for vibration mitigation of structures located in seismically...A friction damper device (FDD) is used for vibration control of an existing steel jacket platform under seismic excitation. First, the damping is presented for vibration mitigation of structures located in seismically active zones. A new method for quick design of friction or yielding damping devices is presented. The effectiveness of the damping system employing such FDDs in a jacket platform is evaluated numerically. The influence of key parameters of the damping system on the vibration suppression of the offshore structure is studied in detail. To examine the vibration control effectiveness of the FDD for the jacket platform, performance of the controlled structure under the seismic forces is studied using numerical simulations. A parametric study is undertaken to discover the optimized slip load and brace area of the FDD. It is shown that the FDD is effective in mitigating the dynamic responses of the offshore platform structure.展开更多
In this experimental study,the impact of Portland cement replacement by ground granulated blast furnace slag(GGBFS)and micronized rubber powder(MRP)on the compressive,flexural,tensile strengths,and rapid chloride migr...In this experimental study,the impact of Portland cement replacement by ground granulated blast furnace slag(GGBFS)and micronized rubber powder(MRP)on the compressive,flexural,tensile strengths,and rapid chloride migration test(RCMT)of concrete were assessed.In this study,samples with different binder content and water to binder ratios,including the MRP with the substitution levels of 0%,2.5%and 5%,and the GGBFS with the substitution ratios of 0%,20%and 40%by weight of Portland cement were made.According to the results,in the samples containing slag and rubber powder in the early ages,on average,a 12.2%decrease in the mechanical characteristics of concrete was observed,nonetheless with raising the age of the samples,the impact of slag on reducing the porosity of concrete lowered the negative impact of rubber powder.Regarding durability characteristics,the RCMT results of the samples were enhanced by using rubber powder because of its insulation impact.Moreover,adding slag into the MRP-included mixtures results in a 23%reduction in the migration rate of the chloride ion averagely.At last,four mathematical statements were derived for the mechanical and durability of concrete containing the MRP and GGBFS utilizing the genetic programming method.展开更多
文摘Compliant offshore structures are used for oil exploitation in deep water. Tension leg platform (TLP) is a suitable type for very deep water. The nonlinear dynamic response of TLP under random sea wave load is necessary for determining the maximum deformations and stresses. Accurate and reliable responses are needed for optimum design and control of the structure. In this paper nonlinear dynamic analysis of TLP is carried out in both time and frequency domains. The time history of random wave is generated based on Pierson-Moskowitz spectrum and acts on the structure in arbitrary direction. The hydrodynamic forces are calculated using the modified Morison equation according to Airy’s linear wave theory. The power spectral densities (PSDs) of displacements, velocities and accelerations are calculated from nonlinear responses. The focus of the paper is on the comprehen-sive interpretation of the responses of the structure related to wave excitation and structural characteristics. As an example a case study is investigated and numerical results are discussed.
基金The authors are grateful for support from the Australian Research Council(ARC)through the Linkage Infrastructure,Equipment and Facilities(LE210100019).The assistance of the ASCII Lab members at Monash University is greatly appreciated.
文摘The application of machine learning(ML)modelling in daylight prediction has been a promising approach for reliable and effective visual comfort assessment.Although many advancements have been made,no standardized ML modelling framework exists in daylight assessment.In this study,625 different building layouts were generated to model useful daylight illuminance(UDI).Two state-of-the-art ML algorithms,eXtreme Gradient Boosting(XGBoost)and random forest(RF),were employed to analyze UDI in four categories:UDI-f(fell short),UDI-s(supplementary),UDI-a(autonomous),and UDI-e(exceeded).A feature(internal finish)was introduced to the framework to better reflect real-world representation.The results show that XGBoost models predict UDI with a maximum accuracy of R^(2)=0.992.Compared to RF,the XGBoost ML models can significantly reduce prediction errors.Future research directions have been specified to advance the proposed framework by introducing new features and exploring new ML architectures to standardize ML applications in daylight prediction.
基金Financial Support by the Pars Oil and Gas Company(Grant No. 88-065)
文摘The development of damage detection techniques for offshore jacket structures is vital to prevent catastrophic events. This paper applies a frequency response based method for the purpose of structural health monitoring. In efforts to fulfill this task, concept of the minimum rank perturbation theory has been utilized. The present article introduces a promising methodology to select frequency points effectively. To achieve this goal, modal strain energy ratio of each member was evaluated at different natural frequencies of structure in order to identify the sensitive frequency domain for damage detection. The proposed methodology opens up the possibility of much greater detection efficiency. In addition, the performance of the proposed method was evaluated in relation to multiple damages. The aforementioned points are illustrated using the numerical study of a two dimensional jacket platform, and the results proved to be satisfactory utilizing the proposed methodology.
文摘A friction damper device (FDD) is used for vibration control of an existing steel jacket platform under seismic excitation. First, the damping is presented for vibration mitigation of structures located in seismically active zones. A new method for quick design of friction or yielding damping devices is presented. The effectiveness of the damping system employing such FDDs in a jacket platform is evaluated numerically. The influence of key parameters of the damping system on the vibration suppression of the offshore structure is studied in detail. To examine the vibration control effectiveness of the FDD for the jacket platform, performance of the controlled structure under the seismic forces is studied using numerical simulations. A parametric study is undertaken to discover the optimized slip load and brace area of the FDD. It is shown that the FDD is effective in mitigating the dynamic responses of the offshore platform structure.
文摘In this experimental study,the impact of Portland cement replacement by ground granulated blast furnace slag(GGBFS)and micronized rubber powder(MRP)on the compressive,flexural,tensile strengths,and rapid chloride migration test(RCMT)of concrete were assessed.In this study,samples with different binder content and water to binder ratios,including the MRP with the substitution levels of 0%,2.5%and 5%,and the GGBFS with the substitution ratios of 0%,20%and 40%by weight of Portland cement were made.According to the results,in the samples containing slag and rubber powder in the early ages,on average,a 12.2%decrease in the mechanical characteristics of concrete was observed,nonetheless with raising the age of the samples,the impact of slag on reducing the porosity of concrete lowered the negative impact of rubber powder.Regarding durability characteristics,the RCMT results of the samples were enhanced by using rubber powder because of its insulation impact.Moreover,adding slag into the MRP-included mixtures results in a 23%reduction in the migration rate of the chloride ion averagely.At last,four mathematical statements were derived for the mechanical and durability of concrete containing the MRP and GGBFS utilizing the genetic programming method.