期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Fourth-Order Compact Formulation for the Resolution of Heat Transfer in Natural Convection of Water-Cu Nanofluid in a Square Cavity with a Sinusoidal Boundary Thermal Condition
1
作者 Mostafa Zaydan Naoufal Yadil +2 位作者 Zoubair Boulahia Abderrahim wakif Rachid Sehaqui 《World Journal of Nano Science and Engineering》 2016年第2期70-89,共20页
In the present work, we numerically study the laminar natural convection of a nanofluid confined in a square cavity. The vertical walls are assumed to be insulated, non-conducting, and impermeable to mass transfer. Th... In the present work, we numerically study the laminar natural convection of a nanofluid confined in a square cavity. The vertical walls are assumed to be insulated, non-conducting, and impermeable to mass transfer. The horizontal walls are differentially heated, and the low is maintained at hot condition (sinusoidal) when the high one is cold. The objective of this work is to develop a new height accurate method for solving heat transfer equations. The new method is a Fourth Order Compact (F.O.C). This work aims to show the interest of the method and understand the effect of the presence of nanofluids in closed square systems on the natural convection mechanism. The numerical simulations are performed for Prandtl number ( ), the Rayleigh numbers varying between  and for different volume fractions varies between 0% and 10% for the nanofluid (water + Cu). 展开更多
关键词 NANOFLUID Heat Transfer Natural Convection Fourth-Order Compact (F.O.C) Formulation Numerical Performance Sinusoidal Boundary Thermal Condition
下载PDF
Falkner-Skan aspects of a radiating(50%ethylene glycol D 50%water)-based hybrid nanofluid when Joule heating as well as Darcy-Forchheimer and Lorentz forces affect significantly
2
作者 Ghulam Rasool A.wakif +2 位作者 Xinhua Wang Ahmed Alshehri Abdulkafi Mohammed Saeed 《Propulsion and Power Research》 SCIE 2023年第3期428-442,共15页
Falkner-Skan aspects are revealed numerically for a non-homogeneous hybrid mixture of 50%ethylene glycol-50%water,silver nanomaterials Ag,and molybdenum disul-fide nanoparticles MoS2 during its motion over a static we... Falkner-Skan aspects are revealed numerically for a non-homogeneous hybrid mixture of 50%ethylene glycol-50%water,silver nanomaterials Ag,and molybdenum disul-fide nanoparticles MoS2 during its motion over a static wedge surface in a DarcyForchheimer porous medium by employing the modified Buongiorno model.The Brownian and thermophoresis mechanisms are included implicitly along with the thermophysical properties of each phase via the mixture theory and some efficient phenomenological laws.The present simulation also accounts for the impacts of nonlinear radiative heat flux,magnetic forces,and Joule heating.Technically,the generalized differential quadrature method and Newton-Raphson technique are applied successfully for solving the resulting nonlinear boundary layer equations.In a limiting case,the obtained findings are validated accurately with the existing literature outcomes.The behaviors of velocity,temperature,and nanoparticles volume fraction are discussed comprehensively against various governing parameters.As crucial results,it is revealed that the temperature is enhanced due to magnetic field,linear porosity,radiative heat flux,Brownian motion,thermophoresis,and Joule heating effects.Also,it is depicted that the hybrid nanoliquids present a higher heat flux rate than the monotype nanoliquids and liquids cases.Moreover,the surface frictional impact is minimized via the linear porosity factor.Furthermore,the surface heat transfer rate receives a prominent improvement due to the radiative heat flux inclusion. 展开更多
关键词 Ethylene glycol-water hybrid fluid Hybrid nanofluid Falkner-Skan flow Nonlinear radiation Modified Buongiorno nanofluid model
原文传递
Numerical Simulation of MHD Peristaltic Flow with Variable Electrical Conductivity and Joule Dissipation Using Generalized Differential Quadrature Method 被引量:1
3
作者 Muhammad Qasim Zafar Ali +1 位作者 Abderrahim wakif Zoubair Boulahia 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第5期509-518,共10页
In this paper, the MHD peristaltic flow inside wavy walls of an asymmetric channel is investigated, where the walls of the channel are moving with peristaltic wave velocity along the channel length. During this invest... In this paper, the MHD peristaltic flow inside wavy walls of an asymmetric channel is investigated, where the walls of the channel are moving with peristaltic wave velocity along the channel length. During this investigation,the electrical conductivity both in Lorentz force and Joule heating is taken to be temperature dependent. Also, the long wavelength and low Reynolds number assumptions are utilized to reduce the governing partial differential equations into a set of coupled nonlinear ordinary differential equations. The new set of obtained equations is then numerically solved using the generalized differential quadrature method(GDQM). This is the first attempt to solve the nonlinear equations arising in the peristaltic flows using this method in combination with the Newton-Raphson technique. Moreover, in order to check the accuracy of the proposed numerical method, our results are compared with the results of built-in Mathematica command NDSolve. Taking Joule heating and viscous dissipation into account, the effects of various parameters appearing in the problem are used to discuss the fluid flow characteristics and heat transfer in the electrically conducting fluids graphically. In presence of variable electrical conductivity, velocity and temperature profiles are highly decreasing in nature when the intensity of the electrical conductivity parameter is strengthened. 展开更多
关键词 peristaltic flow MHD variable electrical conductivity Joule dissipation generalized differential quadrature method(GDQM)
原文传递
Effects of the Form Factor and the Force of the Gravity on the Thermal Exchanges by Natural Convection in a Rectangular Cavity Filled with Nanofluid
4
作者 L. Eljamali A. wakif +2 位作者 Z. Boulahia M. Zaydan R. Sehaqui 《Engineering(科研)》 2019年第1期59-73,共15页
Effects of the form factor on natural convection heat transfer and fluid flow in a two-dimensional cavity filled with Al2O3-nanofluid has been analyzed numerically. A model was developed to explain the behavior of nan... Effects of the form factor on natural convection heat transfer and fluid flow in a two-dimensional cavity filled with Al2O3-nanofluid has been analyzed numerically. A model was developed to explain the behavior of nanofluids taking account of the volume fraction φ. The Navier-Stokes equations are solved numerically by alternating an implicit method (Method ADI) for various Rayleigh numbers varies as 103, 104 and 105. The nanofluid used is aluminum oxide with water Pr = 6.2;solid volume fraction φ is varied as 0%, 5% and 10%. Inclination angle Φ varies from 0° to 90° with a step the 15° and the form report varies as R = 0.25, 0.5, 1 and 4. The problem considered is a two-dimensional heat transfer enclosure. The vertical walls are differentially heated;the right is cold when the left is hot. The horizontal walls are assumed to be insulated. The nanofluid in the cavity is considered as incompressible, Newtonian and laminar flow. The nanoparticles are assumed to have a shape and a uniform size. However, it is supposed that the two fluid phases and nanoparticles are in a state of thermal equilibrium and they sink at the same speed. The thermophysical properties of nanofluids are assumed to be constant at the exception of the variation of density in the force of buoyancy, which is based on the approximation of Boussinesq values. 展开更多
关键词 NANOFLUID Heat Transfer THERMAL EXCHANGES Natural Convection The FORCE of the GRAVITY Form Factor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部