Quantum molecular dynamics (QMD) is used to investigate multifragmentation resulting from an expanding nuclear matter. Equation of state, the structure of nuclear matter and symmetric nu-clear matter is discussed. Als...Quantum molecular dynamics (QMD) is used to investigate multifragmentation resulting from an expanding nuclear matter. Equation of state, the structure of nuclear matter and symmetric nu-clear matter is discussed. Also, the dependence of the fragment mass distribution on the initial temperature (Tinit) and the radial flow velocity (h) is studied. When h is large, the distribution shows exponential shape, whereas for small h, it obeys the exponentially falling distribution with mass number. The cluster formation in an expanding system is found to be different from the one in a thermally equilibrated system. The used Hamiltonian has a classical kinetic energy term and an effective potential term composed of four parts.展开更多
The experimental results of complete charge distribution of projectile fragments (PFS) and the total charge of the projectile fragments (PFS ) are presented. Also the multiplicity distributions of (PFS) and the rapidi...The experimental results of complete charge distribution of projectile fragments (PFS) and the total charge of the projectile fragments (PFS ) are presented. Also the multiplicity distributions of (PFS) and the rapidity distribution of shower tracks produced from events with nh = 0 from 28Si with emulsion at 4.5 A GeV /c are obtained.展开更多
We have investigated the main experimental characteristics(multiplicity correlation ,angular distributions and the analysis of emission of the shower particles produced at target fragments in central collisions of 28S...We have investigated the main experimental characteristics(multiplicity correlation ,angular distributions and the analysis of emission of the shower particles produced at target fragments in central collisions of 28Si+AgBr at 4.5AGeV/c has shown a formation of hadronic and baryonic clusters. Events of central collisions are defined, here, as those having no projectile charged fragments, even a singly charged one, emitted within 30 of the beam direction.展开更多
In iron-based superconductors,the(0,π) or(π,0) nematicity,which describes an electronic anisotropy with a fourfold symmetry breaking,is well established and believed to be important for understanding the superconduc...In iron-based superconductors,the(0,π) or(π,0) nematicity,which describes an electronic anisotropy with a fourfold symmetry breaking,is well established and believed to be important for understanding the superconducting mechanism.However,how exactly such a nematic order observed in the normal state can be related to the superconducting pairing is still elusive.Here,by performing angular-dependent in-plane magnetoresistivity using ultra-thin flakes in the steep superconducting transition region,we unveil a nematic superconducting order along the(π,π) direction in electron-doped BaFe_(2-x)Ni_(x)As_(2) from under-doped to heavily overdoped regimes with x=0.065- 0.18.It shows superconducting gap maxima along the(π,π) direction rotated by 45° from the nematicity along(0, π) or(π,0) direction observed in the normal state.A similar(π,π)-type nematicity is also observed in the under-doped and optimally doped hole-type Ba1-yKyFe2 As_(2),with y=0.2-0.5.These results suggest that the(π,π) nematic superconducting order is a universal feature that needs to be taken into account in the superconducting pairing mechanism in iron-based superconductors.展开更多
文摘Quantum molecular dynamics (QMD) is used to investigate multifragmentation resulting from an expanding nuclear matter. Equation of state, the structure of nuclear matter and symmetric nu-clear matter is discussed. Also, the dependence of the fragment mass distribution on the initial temperature (Tinit) and the radial flow velocity (h) is studied. When h is large, the distribution shows exponential shape, whereas for small h, it obeys the exponentially falling distribution with mass number. The cluster formation in an expanding system is found to be different from the one in a thermally equilibrated system. The used Hamiltonian has a classical kinetic energy term and an effective potential term composed of four parts.
文摘The experimental results of complete charge distribution of projectile fragments (PFS) and the total charge of the projectile fragments (PFS ) are presented. Also the multiplicity distributions of (PFS) and the rapidity distribution of shower tracks produced from events with nh = 0 from 28Si with emulsion at 4.5 A GeV /c are obtained.
文摘We have investigated the main experimental characteristics(multiplicity correlation ,angular distributions and the analysis of emission of the shower particles produced at target fragments in central collisions of 28Si+AgBr at 4.5AGeV/c has shown a formation of hadronic and baryonic clusters. Events of central collisions are defined, here, as those having no projectile charged fragments, even a singly charged one, emitted within 30 of the beam direction.
基金Supported by the National Natural Science Foundation of China(Grant Nos.61771234,61727805,11674157,11674158,11774152,11822405,61521001,6157121961501222)+6 种基金the National Key Projects for Research and Development of China(Grant Nos.2016YFA0300401,2017YFB0503302,2017YFA03040022017YFB0503300)the start-up funding from ShanghaiTech University,Innovative Research Team in University(PCSIRT)the Natural Science Foundation of Shanghai Municipality(Grant No.20ZR1436100)the Science and Technology Commission of Shanghai Municipality(Grant No.YDZX20203100001438)Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves,Natural Science Foundation of Jiangsu Province(Grant No.BK20180006)the Fundamental Research Funds for the Central Universities(Grant No.020414380117)。
文摘In iron-based superconductors,the(0,π) or(π,0) nematicity,which describes an electronic anisotropy with a fourfold symmetry breaking,is well established and believed to be important for understanding the superconducting mechanism.However,how exactly such a nematic order observed in the normal state can be related to the superconducting pairing is still elusive.Here,by performing angular-dependent in-plane magnetoresistivity using ultra-thin flakes in the steep superconducting transition region,we unveil a nematic superconducting order along the(π,π) direction in electron-doped BaFe_(2-x)Ni_(x)As_(2) from under-doped to heavily overdoped regimes with x=0.065- 0.18.It shows superconducting gap maxima along the(π,π) direction rotated by 45° from the nematicity along(0, π) or(π,0) direction observed in the normal state.A similar(π,π)-type nematicity is also observed in the under-doped and optimally doped hole-type Ba1-yKyFe2 As_(2),with y=0.2-0.5.These results suggest that the(π,π) nematic superconducting order is a universal feature that needs to be taken into account in the superconducting pairing mechanism in iron-based superconductors.