期刊文献+
共找到122篇文章
< 1 2 7 >
每页显示 20 50 100
阿尔金断裂带康西瓦段晚第四纪以来的左旋滑移速率及其大地震复发周期的探讨 被引量:40
1
作者 李海兵 J.Van der Woerd +5 位作者 孙知明 A. -S. Mériaux P. Tapponnier F. J. Ryerson 司家亮 潘家伟 《第四纪研究》 CAS CSCD 北大核心 2008年第2期197-213,共17页
在高分辨率Ikonos卫星影像(1m分辨率)分析基础上,结合野外考察和定量测量,详细研究了阿尔金断裂带西段康西瓦段三十里营房地区晚第四纪以来的变形特征,在三十里营房东侧塔尔萨依吉勒尕河下游地区,断裂切割了一系列发育完好的冲积... 在高分辨率Ikonos卫星影像(1m分辨率)分析基础上,结合野外考察和定量测量,详细研究了阿尔金断裂带西段康西瓦段三十里营房地区晚第四纪以来的变形特征,在三十里营房东侧塔尔萨依吉勒尕河下游地区,断裂切割了一系列发育完好的冲积扇和阶地。6级不同阶地陡坎和邻近冲积扇面上冲沟的左旋位错量分别为251±4m,250±5m,198±4m,22±2m,12±Im和约6m。T2表面的放弃年龄约10.9±0.2ka(^10Be)所限定的位错量22~200m,得到左旋滑移速率为2—18mm/a;而T4阶地的最大累积位错可能达500m,暗示的左旋滑移速率约4—5mm/a。最近一次大地震造成的最新地貌左旋水平位错量约6m,该地震同震地表破裂带沿喀拉喀什河谷延伸长达100km,估算为Mw7.4地震,约12m的位错量可能是公元975—1020年(AMS^14C)以来最近两次大地震的累积同震地表位错,约6m的特征滑移量暗示该地段发生类似约Mw7.4地震的复发周期约370—500a。这些结果表明,在青藏高原北缘,阿尔金断裂带西段为大型的左旋走滑断裂,它吸收了印度/欧亚大陆碰撞产生的较大部分应变,并使高原西部物质向东运移。 展开更多
关键词 晚第四纪 滑移速率 特征滑移 地震复发周期 康西瓦 阿尔金断裂带
下载PDF
温拌沥青混合料的压实特性与难易系数 被引量:16
2
作者 延西利 陈四来 +2 位作者 安舒文 李昂 张青 《交通运输工程学报》 EI CSCD 北大核心 2017年第1期11-19,共9页
为了研究温拌沥青混合料的压实性能及其可压实的难易程度,选用3种同品牌温拌沥青(ACMP1、ACMP2与ACMP3)和2种热拌沥青(70#基质沥青与SBS改性沥青),制备了AC-13C型沥青混合料,采用马歇尔击实试验,变化不同的击实次数和击实温度,测试了马... 为了研究温拌沥青混合料的压实性能及其可压实的难易程度,选用3种同品牌温拌沥青(ACMP1、ACMP2与ACMP3)和2种热拌沥青(70#基质沥青与SBS改性沥青),制备了AC-13C型沥青混合料,采用马歇尔击实试验,变化不同的击实次数和击实温度,测试了马歇尔试件的压实度和稳定度,分析了其变化规律,建立了压实度与击实次数的指数回归关系,引入了压实成长曲率因子,定义了压实难易系数。试验结果表明:沥青混合料的压实度随着击实次数的增加而呈指数增长,初期增长较快,后期较慢,且最终趋于稳定;在击实温度为90℃~150℃的范围内,压实度随着击实温度的升高呈线性增长;马歇尔稳定度随压实度增大呈线性增长变化,符合传统研究结果;温拌沥青混合料的压实难易系数比热拌沥青混合料降低了13.5%~18.5%,具有较小的压实难易系数,更容易压实。 展开更多
关键词 路面材料 沥青混合料 压实度 击实温度 击实次数 难易系数
原文传递
Seepage characteristics of a fractured silty mudstone under different confining pressures and temperatures 被引量:12
3
作者 FU Hong-yuan JIANG Huang-bin +3 位作者 QIU Xiang JI Yun-peng CHEN Wen ZENG Ling 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期1907-1916,共10页
To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental sy... To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental system, and the effects of different factors on coefficient of permeability were discussed. The results showed that the increasing confining pressure will gradually decrease the coefficient of permeability, and this process is divided into two stages: 1) the fast decrease stage, which corresponds to a confining pressure less than 30 kPa, and 2) the slow decrease stage, which corresponds to a confining pressure larger than 30 kPa. Unlike confining pressure, an increase in temperature will increase the coefficient of permeability. It is noted that fracture surface roughness will also affect the variation of coefficient of permeability to a certain extent. Among the three examined factors, the effect of confining pressure increases is dominant on fracture permeability coefficient. The relationship between the confining pressure and coefficient of permeability can be quantified by an exponential function. 展开更多
关键词 silty mudstone seepage characteristic confining pressure TEMPERATURE PERMEABILITY
下载PDF
Correlation between Chemical Durability Behaviour and Structural Approach of the Vitreous Part of the System 55P2O5-2Cr2O3-(43-x) Na2O-xPbO 被引量:7
4
作者 Nadia Beloued Zineb Chabbou Said Aqdim 《Advances in Materials Physics and Chemistry》 2016年第6期149-156,共8页
Various characterisation techniques were used to study the composition of the glass series 55-P<sub>2</sub>O<sub>5</sub>-2Cr<sub>2</sub>O<sub>3</sub>-(43-x) Na<sub>... Various characterisation techniques were used to study the composition of the glass series 55-P<sub>2</sub>O<sub>5</sub>-2Cr<sub>2</sub>O<sub>3</sub>-(43-x) Na<sub>2</sub>O-xPbO (with 8 ≤ x ≤ 38;mole %) in terms of chemical durability, IR spectroscopy and scanning electron microscopy (SEM). The change in the dissolution rate as a function of time when the studied glasses were kept submerged in distilled water at 90°C for 20 days showed an improvement in the chemical durability when Na<sub>2</sub>O content was substituted to PbO content. IR spectroscopy revealed a structural change from ultraphosphate groups to pyrophosphate, orthophosphate and probably ring metaphosphate groups. SEM revealed the existence of two phases: a vitreous phase and a crystalline phase. The presence of Cr<sub>2</sub>O<sub>3</sub>, even in small amounts, seems to play an important role in the formation of crystallites in the glass network. The improved chemical durability is attributed to the replacement of the easily hydrated Na-O-P and P-O-P bonds by covalent and resistant Pb-O-P bands. Both the increase in PbO content and in the Pb + Cr/P ratio causes an increase in the number of covalent Pb-O-P and Cr-O-P bonds, making the glass structure more rigid. The increase of the covalent Pb-O-P bands leads to a clear evolution of the structure and chemical resistance, caused by grain-boundary resistance as a result of glass crystallisation. The IR spectra indicate that the increase in PbO content favours the formation of isolated PO<sup>3-</sup>4</sub> orthophosphate groups at the expense of pyrophosphate groups. The radical change in the structure from ultraphosphate groups to pyrophosphate and orthophosphate groups seems to be the cause of the formation of crystallites. The existence of crystallites in these glasses results in a marked improvement in their chemical durability. However, when the crystallites exceed a certain limit, the equilibrium between the glass bath and these crystallites is no longer maintained;we notice, once, a dec 展开更多
关键词 Phosphate Glasses Chemical Durability IR SEM
下载PDF
Evaluation of Water Losses by Evaporation in the Nakanbe Basin
5
作者 Bayala Alfred Kabre Sayouba +5 位作者 Yonli Hamma Fabien Chesneau Xavier Thierry Sikoudouin Maurice Ky Zeghmati Belkacem Kieno P. Florent Kam Sié 《Atmospheric and Climate Sciences》 2024年第1期29-41,共13页
A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The e... A numerical approach to heat and mass transfer in a large water reservoir is presented. This water reservoir is likened to a parallelepiped reservoir whose vertical and lower walls are adiabatic and impermeable. The equations that govern natural convection in water are solved by the finite volume method and Thomas’salgorithm. The adequacy between the velocity and pressure fields is ensured by the SIMPLE algorithm. We are going to evaluate the water losses by evaporation from three dams in the Nakanbé basin in Burkina Faso for a period of thirty years, that is to say from January 1, 1991, to March 15, 2020. The three dams have a rate of evaporation greater than 40% of the volume of water stored. Indeed the rate of evaporation in each dam increases with the water filling rate in the reservoir: we have observed the following results for each dam in the Nakanbé basin;for the date of 02/27/1988 to 03/13/2020., the Loumbila dam received a total volume of stored water of 22.02 Mm<sup>3</sup> and 10.57 Mm<sup>3</sup> as the total volume of water evaporated at the same date. At the Ouaga dam (2 + 3), it stored a water volume of 4.06 Mm<sup>3</sup> and evaporated 2.03 Mm<sup>3</sup> of its storage volume from 01/01/1988 to 05/07/2016. Finally, with regard to the Bagré dam, it stored 745.16 Mm<sup>3</sup> of water and 365.13 Mm<sup>3</sup> as the volume of water evaporated from 01/01/1993 to 03/31/2020. 展开更多
关键词 Numerical Study EVAPORATION Meteorological Data Natural Convection BASINS DAMS
下载PDF
Investigation of the Fermentation Mode of Rice Husk for the Stabilization of Earth Plaster
6
作者 Nafissatou Savadogo Yasmine Binta Traore +2 位作者 Nathael Lankoande Philbert Nshimiyimana Adamah Messan 《Journal of Minerals and Materials Characterization and Engineering》 2024年第1期17-36,共20页
Despite its low resistance to humidity, adobe remains the most widely used material for housing construction, particularly in developing countries. The present study aims to assess different modes of use of fermented ... Despite its low resistance to humidity, adobe remains the most widely used material for housing construction, particularly in developing countries. The present study aims to assess different modes of use of fermented RH and to evaluate their influence on the behavior of raw earth for application in plaster. The influences of two types of RH are evaluated: granular rice husk (RHg) and powdered RH (RHp). The clay mainly consists of clay (40%), silt (22%), and sand (38.4%), with a small proportion of gravel (0.24%). Its liquidity limit is 40% and the plasticity index is 26.5%. The mixtures were designed using earth and each of the two rice husks at the volumetric content of 10%, 15% and 20% of the total volume mixed with water 36.5%, 38.5% and 40.3% and fermented for three weeks. Each fermented mixture was added to the soil to form the paste, and 40 × 40 × 160 mm<sup>3</sup> test speciments were made for characterization. The results generally show an improvement in the physico-mechanical properties and water resistance of the mortars containing fermented RH, with an optimal content between 10% and 15%. The powdered RH improved the performance of the mortar better than granular RH. 展开更多
关键词 Earth Plaster Rice Husk CLAY FERMENTATION ADOBE
下载PDF
Influence of Heavy Fuel Oil on the Thermo-Physical and Erodibility Properties of Earthen Materials
7
作者 Ohindemi G. Yameogo Donzala D. Some +3 位作者 Souleymane Ouedraogo Philbert Nshimiyimana Sié Kam Dieudonné J. Bathiebo 《Journal of Minerals and Materials Characterization and Engineering》 2024年第1期37-48,共12页
This study focuses on the use of heavy fuel oil in construction material in Burkina Faso. Its mixture with silty or clayey soil is used as a coating to reinforce the walls of raw earth constructions which are very sen... This study focuses on the use of heavy fuel oil in construction material in Burkina Faso. Its mixture with silty or clayey soil is used as a coating to reinforce the walls of raw earth constructions which are very sensitive to water. The interest of this study is to determine erodibility, water content, while highlighting the influence of the porosity accessible by water on thermal diffusion in construction material containing heavy fuel oil. The heavy fuel oil was mixed with a silty-clayey soil, in different proportions, and water to make bricks samples on which tests were carried out. At the end of the experimental tests, it appears that the water content increases gradually, but not significantly with the addition of heavy fuel oil, which causes a slight increase in the speed of heat propagation through the material with reduced porosity, particularly those containing higher quantities of heavy fuel oil. Conversely, we note a good performance of heavy fuel oil in terms of water resistance properties such as porosity accessible by water and erodibility. This allows us to conclude that the mixture of heavy fuel oil and silty-clayey soil used as a coating material could greatly reduce water infiltration into the walls of housing constructions with raw earthen materials. 展开更多
关键词 Porosity Accessible by Water ERODIBILITY Water Content Thermal Diffusion
下载PDF
Hexavalent Chromium Cr (VI) Removal from Water by Mango Kernel Powder
8
作者 Amadou Sarr Gning Cheikh Gaye +3 位作者 Antoine Blaise Kama Pape Abdoulaye Diaw Diène Diégane Thiare Modou Fall 《Journal of Materials Science and Chemical Engineering》 2024年第1期84-103,共20页
Metal trace elements (MTE) are among the most harmful micropollutants of natural waters. Eliminating them helps improve the quality and safety of drinking water and protect human health. In this work, we used mango ke... Metal trace elements (MTE) are among the most harmful micropollutants of natural waters. Eliminating them helps improve the quality and safety of drinking water and protect human health. In this work, we used mango kernel powder (MKP) as bioadsorbent material for removal of Cr (VI) from water. Uv-visible spectroscopy was used to monitor and quantify Cr (VI) during processing using the Beer-Lambert formula. Some parameters such as pH, mango powder, mass and contact time were optimized to determine adsorption capacity and chromium removal rate. Adsorption kinetics, equilibrium, isotherms and thermodynamic parameters such as ΔG˚, ΔH˚, and ΔS˚, as well as FTIR were studied to better understand the Cr (VI) removal process by MKP. The adsorption capacity reached 94.87 mg/g, for an optimal contact time of 30 min at 298 K. The obtained results are in accordance with a pseudo-second order Freundlich adsorption isotherm model. Finally FTIR was used to monitor the evolution of absorption bands, while Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were used to evaluate surface properties and morphology of the adsorbent. 展开更多
关键词 ADSORPTION CHROMIUM Mango Kernel Powder Spectroscopy Analysis Water Treatment
下载PDF
超高速和极高速光学成像技术研究进展(特邀)
9
作者 栗星 柏晨 +8 位作者 李润泽 彭彤 田璇 闵俊伟 杨延龙 但旦 于湘华 梁晋阳 姚保利 《激光与光电子学进展》 CSCD 北大核心 2024年第2期281-304,共24页
高速成像技术在物理、化学、生物医学、材料科学及工业等众多领域扮演着十分重要的角色。受电荷存储和读取速度的限制,基于电子成像器件的数码相机成像速度难以进一步提高。近年来,随着成像新技术的发展,超高速和极高速光学成像的性能... 高速成像技术在物理、化学、生物医学、材料科学及工业等众多领域扮演着十分重要的角色。受电荷存储和读取速度的限制,基于电子成像器件的数码相机成像速度难以进一步提高。近年来,随着成像新技术的发展,超高速和极高速光学成像的性能已得到显著提升,具备更高的时间分辨率、空间分辨率及更大的序列深度等。介绍高速成像技术的发展历程,根据成像方式,将近年来具有代表性的新型超高速和极高速光学成像技术分为直接成像和编码计算成像两个类别。分别介绍和讨论各种新型超高速和极高速光学成像技术的概念和原理,并比较各自的优缺点。最后,对这一领域的发展趋势和前景进行展望。本文旨在帮助研究者系统了解超高速和极高速光学成像技术的基本知识、最新研究发展趋势和潜在应用,为该领域科学研究提供参考。 展开更多
关键词 高速成像 超高速成像 极高速成像 时间分辨率 空间分辨率 序列深度
原文传递
光驱动Rh/InGaN_(1-x)O_(x)纳米组装体甲烷干重整制合成气
10
作者 李亦昕 李景林 +8 位作者 俞天奇 邱亮 Syed M.Najib Hasan 姚琳 潘虎 Shamsul Arafin Sharif Md.Sadaf 朱磊 周宝文 《Science Bulletin》 SCIE EI CAS CSCD 2024年第10期1400-1409,共10页
Light-driven dry reforming of methane toward syngas presents a proper solution for alleviating climate change and for the sustainable supply of transportation fuels and chemicals.Herein,Rh/InGaN_(1-x)O_(x) nanowires s... Light-driven dry reforming of methane toward syngas presents a proper solution for alleviating climate change and for the sustainable supply of transportation fuels and chemicals.Herein,Rh/InGaN_(1-x)O_(x) nanowires supported by silicon wafer are explored as an ideal platform for loading Rh nanoparticles,thus assembling a new nanoarchitecture for this grand topic.In combination with the remarkable photothermal synergy,the O atoms in Rh/InGaN_(1-x)O_(x) can significantly lower the apparent activation energy of dry reforming of methane from 2.96 eV downward to 1.70 eV.The as-designed Rh/InGaN_(1-x)O_(x) NWs nanoarchitecture thus demonstrates a measurable syngas evolution rate of 180.9 mmol g_(cat)^(-1) h^(-1) with a marked selectivity of 96.3% under concentrated light illumination of 6 W cm^(-2).What is more,a high turnover number(TON)of 4182 mol syngas per mole Rh has been realized after six reuse cycles without obvious activity degradation.The correlative 18O isotope labeling experiments,in-situ irradiated X-ray photoelectron spectroscopy(ISI-XPS)and in-situ diffuse reflectance Fourier transform infrared spectroscopy characterizations,as well as density functional theory calculations reveal that under light illumination,Rh/InGaN_(1-x)O_(x) NWs facilitate releasing^(*)CH_(3) and H^(+)from CH_(4) by holes,followed by H_(2) evolution from H^(+)reduction with electrons.Subsequently,the O atoms in Rh/InGaN_(1-x)O_(x) can directly participate in CO generation by reacting with the ^(*)C species from CH_(4) dehydrogenation and contributes to the coke elimination,in concurrent formation of O vacancies.The resultant O vacancies are then replenished by CO_(2),showing an ideal chemical loop.This work presents a green strategy for syngas production via light-driven dry reforming of methane. 展开更多
关键词 Dry reforming of methane Photo-thermal catalysis Rh/InGaN_(1-x)O_(x)nanowires
原文传递
Process Optimization and Modeling by Response Surface Methodology of Nitrite Electro-Reduction by Ti/RuO2 + IrO2 Electrode
11
作者 Mar Bassine Boye Abdou Khadre Djily Dimé +2 位作者 Adama Diop Cheikhou Kane Modou Fall 《American Journal of Analytical Chemistry》 2023年第12期531-540,共10页
Electrochemical reduction is one of the most suitable methods for the treatment of highly nitrate-contaminated solutions. This work focuses on the optimization of parameters influencing the electrochemical denitrifica... Electrochemical reduction is one of the most suitable methods for the treatment of highly nitrate-contaminated solutions. This work focuses on the optimization of parameters influencing the electrochemical denitrification of water by the Ti/RuO<sub>2</sub> + IrO<sub>2</sub> electrode. The methodological approach used consists in carrying out a series of electrolysis by scrutinizing the reaction selectivity according to the experimental conditions. For this study, the  ions concentrations before and after electrolysis were determined by UV-vis absorption spectroscopy. The results of the process optimization showed that the electrochemical reduction ofis efficient at neutral pH after 120 mn of electrolysis at -100 mA. In contrast to works found in the literature, this study highlighted the process modeling that could open interesting perspectives to develop new treatment methods of polluted waters. 展开更多
关键词 Electrochemical Reduction Water Treatment NITRITE Optimization MODELLING
下载PDF
Effect of High-Speed Solar Winds Turbulence Upstream of the Earth’s Magnetosphere: Case of the Outer Minima of Solar Cycles 20, 21, 22, 23 and 24
12
作者 Inza Gnanou Salfo Kabore +3 位作者 Aristide Marie Frédéric Gyebre Christian Zoundi Jean-Louis Zerbo Frédéric Ouattara 《Open Journal of Applied Sciences》 2023年第7期1145-1162,共18页
Highly turbulent environment, the solar wind is a stream of very energetic particles mainly made of protons and electrons. During its trip in the interplanetary space, this solar flow becomes more accelerated during t... Highly turbulent environment, the solar wind is a stream of very energetic particles mainly made of protons and electrons. During its trip in the interplanetary space, this solar flow becomes more accelerated during the outer minima (descending phases) of the solar cycles and can therefore influence all of humanity and its technology. These disturbances lead to socio-economic consequences requiring a precise knowledge of the climate variability. Using a statistical approach, we evaluate the response of the Earth’s magnetosphere to the High-Speed Solar Winds (HSSW) forcing during the peaks of the last five outer minima. To do so, 1UA data of solar wind and magnetic field parameters were extracted from OMNI browser. Analysis of the energetic solar plasma particles shows that strong geomagnetic field variations can occur even in the absence of large solar disturbances. While the normalized reconnection rate was estimated to be ~21% of the total variance of the magnetospheric variables, the upstream of the magnetic cavity was perturbed 80% of the time with large energies recorded. As a result, Earth’s magnetosphere becomes denser (i.e., more drag), which is a problem for spacecraft. Thus, the coupled solar wind-magnetosphere system follows scale-invariant dynamics and is in a state far from equilibrium. Our analysis provides insight into the main cause of geomagnetic storms with more than 97% of HSSW imposed in the range 300 - 850 km/s. These high-speeds lead to auroras that can disrupt electrical and communication systems. 展开更多
关键词 Solar Wind Outer Minimum MAGNETOSPHERE Geomagnetic Field Solar Disturbances
下载PDF
Thermal Properties of Earth Bricks Stabilised with Cement and Sawdust Residue Using the Asymmetrical Hot-Plane Method
13
作者 Gabin Alex Nouemssi Guy Edgar Ntamack +1 位作者 Martin Ndibi Mbozo’O Bonaventure Djeumako 《Open Journal of Applied Sciences》 2023年第11期1910-1934,共25页
This paper presents an experimental study of the characterisation of local materials used in the construction and thermal insulation of buildings. These materials are compressed earth bricks stabilised with cement and... This paper presents an experimental study of the characterisation of local materials used in the construction and thermal insulation of buildings. These materials are compressed earth bricks stabilised with cement and sawdust. The thermal conductivity, diffusivity, effusivity, and specific heat of earth-based materials containing cement or sawdust have been determined. The results show that the blocks with earth + sawdust are better thermal insulators than the blocks with simple earth. We observe an improvement in thermal efficiency depending on the presence of sawdust or cement stabilisers. For cement stabilisation, the thermal conductivity increases (λ: 1.04 to 1.36 W·m<sup>-1</sup>·K<sup>-1</sup>), the diffusivity increases (from 4.32 × 10<sup>-7</sup> to 9.82 × 10<sup>-7</sup> m<sup>2</sup>·s<sup>-1</sup>), and the effusivity decreases (1404 - 1096 J·m<sup>-2</sup>·K<sup>-1</sup>·s<sup>-1/2</sup>). For sawdust stabilisation, the thermal conductivity decreases (λ: 1.04 to 0.64 W·m<sup>-1</sup>·K<sup>-1</sup>), the diffusivity increases (from 4.32 × 10<sup>-7</sup> to 5.9 × 10<sup>-7</sup> m<sup>2</sup>·s<sup>-1</sup>), and the effusivity decreases (1404 - 906 J·m<sup>-2</sup>·K<sup>-1</sup>·s<sup>-1/2</sup>). Improving the structural and thermal efficiency of BTC via stabilisation with derived binders or cement is beneficial for the load-bearing capacity and thermal performance of buildings. 展开更多
关键词 Clay Brick West Cameroon Thermal Conductivity Asymmetric Hot Surface Thermal Properties
下载PDF
Study of the Thermodynamic Properties of Thermal Plasmas of Fluoroalkylamine-Air Mixtures
14
作者 Pafadnam Ibrahim Kohio Nièssan +3 位作者 Yaguibou Wêpari Charles Kagoné Abdoul Karim Koalaga Zacharie André Pascal 《Advances in Materials Physics and Chemistry》 CAS 2023年第5期85-100,共16页
Knowledge of thermodynamic properties as well as parameters such as energy density and power flow isimportant for modeling thermal plasmas of fluoroalkylamine-air mixtures. In this paper, these thermodynamic prop... Knowledge of thermodynamic properties as well as parameters such as energy density and power flow isimportant for modeling thermal plasmas of fluoroalkylamine-air mixtures. In this paper, these thermodynamic properties of fluoroalkylamine-air mixture plasmas are calculated in a temperature range of 500 K to 20,000 K at atmospheric pressure and local thermodynamic equilibrium (LTE). The Gibbs free energy minimization method is used to determine the chemical equilibrium compositions of the plasmas that are needed to calculate the thermodynamic properties. These thermodynamic properties are then used to calculate the energy density and power flow of these plasmas. The variation of the energy density is related to the variations of the density and mass enthalpy. We notice that, this energy density increases with the percentage of air in the mixture for temperatures higher than 7000 K. The power flow, which depends also on density, enthalpy mass and sound speed, increases with the percentage of air in the same temperature range. Energy density and power flow results show that increasing air percentage in the mixture can be more interesting for damaging gaseous chemical species such as CF<sub>2</sub>, CO, HCN, and HF appearing at low temperatures with high concentrations. 展开更多
关键词 Fluoroalkylamine Thermodynamic Properties Chemical Composition En-ergy Density Power Flow
下载PDF
超稳定铁磁界面助力锌金属电池实用化 被引量:2
15
作者 孙闯 张文多 +5 位作者 邱大平 童敏曼 陈张森 孙书会 赖超 侯仰龙 《Science Bulletin》 SCIE EI CAS CSCD 2023年第22期2750-2759,M0005,共11页
可充电的水系锌金属电池由于其低成本和高安全的特性,已成为大规模储能电池最有潜力的备选之一.然而,锌枝晶的不可控生长以及副反应多的问题(尤其在高容量充放条件下)严重阻碍了其实用化进程.本文提出了铁磁界面和磁场相结合的改性策略... 可充电的水系锌金属电池由于其低成本和高安全的特性,已成为大规模储能电池最有潜力的备选之一.然而,锌枝晶的不可控生长以及副反应多的问题(尤其在高容量充放条件下)严重阻碍了其实用化进程.本文提出了铁磁界面和磁场相结合的改性策略,有效地解决了这些问题.引入的高稳定铁磁界面层,不仅能够保证磁场在电极表面长效地调节锌均匀沉积,而且可有效地抑制表面副反应的发生.这些优势使得锌金属负极能够在82%的深度放电条件下稳定循环350 h;匹配五氧化二钒正极材料后,全电池在13.1 mg/cm^(2)的高载量条件下展现出超稳定的循环.该研究对于促进可充电锌金属电池实用化具有重要指导意义. 展开更多
关键词 Zn metal battery Ferromagnetic interface Magnetic field Dendrite-free Side reactions
原文传递
Optimisation of Thermal Comfort of Building in a Hot and Dry Tropical Climate: A Comparative Approach between Compressed Earth/Concrete Block Envelopes
16
作者 Arnaud Louis Sountong-Noma Ouedraogo Césaire Hema +2 位作者 Sjoerd Moustapha N’guiro Philbert Nshimiyimana Adamah Messan 《Journal of Minerals and Materials Characterization and Engineering》 2024年第1期1-16,共16页
Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid... Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid environments are not mastered. This article evaluates the influence of architectural and constructive modes of buildings made of CEB walls and concrete block walls, to optimize and compare their thermal comfort in the hot and dry tropical climate of Ouagadougou, Burkina Faso. Two identical pilot buildings whose envelopes are made of CEB and concrete blocks were monitored for this study. The thermal models of the pilot buildings were implemented in the SketchUp software using an extension of EnergyPlus. The models were empirically validated after calibration against measured thermal data from the buildings. The models were used to do a parametric analysis for optimization of the thermal performances by simulating plaster coatings on the exterior of walls, airtight openings and natural ventilation depending on external weather conditions. The results show that the CEB building displays 7016 hours of discomfort, equivalent to 80.1% of the time, and the concrete building displays 6948 hours of discomfort, equivalent to 79.3% of the time. The optimization by modifications reduced the discomfort to 2918 and 3125 hours respectively;i.e. equivalent to only 33.3% for the CEB building and 35.7% for the concrete building. More study should evaluate thermal optimizations in buildings in real time of usage such as residential buildings commonly used by the local middle class. The use of CEB as a construction material and passive means of improving thermal comfort is a suitable ecological and economical option to replace cementitious material. 展开更多
关键词 Compressed Earth Blocks Hot and Dry Climate Thermal Comfort Architectural Optimization of Thermal Models Cement Blocks Empirical Validation
下载PDF
Influence of the Granular Class of Crushed Granites on the Litho-Stabilization of Samo Laterites (South-East of Côte d’Ivoire)
17
作者 Abalé Martial Grehoa Conand Honoré Kouakou +3 位作者 Koffi Clément Kouadio Souleymane Ouattara Aka Alexandre Assande Edjikémé Emeruwa 《Open Journal of Civil Engineering》 2023年第3期540-553,共14页
Most of the laterites found in Ivory Coast do not meet the technical conditions to be used in their natural state for the design of road foundations. Also, to meet the growing needs for road materials, various amendme... Most of the laterites found in Ivory Coast do not meet the technical conditions to be used in their natural state for the design of road foundations. Also, to meet the growing needs for road materials, various amendments are made to them, including litho-stabilization. Thus, this study proposes to understand the influence of the granular class of natural aggregates on the performance of laterites. To achieve this objective, different proportions of crushed granites of class 0/5, 0/15 and 5/15 have been incorporated into the soils of southern Côte d’Ivoire, especially in Samo. This modified soil has been subjected to mechanical tests such as the modified Proctor and CBR test. The results obtained show that the dry densities of the incorporated laterites containing crushed granites increase with the content of natural aggregates and decrease with the increase in the water content. Likewise, the CBR bearing indices at 95% of the Modified Optimum Proctor of the different compositions (laterites + crushed granites) increase with the proportion of aggregates. The addition of coarse aggregates to the laterites therefore promotes the establishment of a framework which improves its bearing capacity. From 20% to 30% crushed granites respectively of class 0/15;0/5 and 5/15, the values of the CBR obtained are greater than those of 30% therefore these modified soils can be used as a foundation layer for traffic of T1, T2 and T3 type. Likewise, the laterites’ mixtures with at least 40% crushed granites of class 0/15 and 0/5 can also be used for the foundation and base layers. 展开更多
关键词 LATERITE Litho-Stabilization Natural Aggregate Coarse Aggregate CBR Modified Proctor Incorporated Laterites
下载PDF
Influence of Defect Density, Band Gap Discontinuity and Electron Mobility on the Performance of Perovskite Solar Cells
18
作者 Issiaka Sankara Soumaïla Ouédraogo +4 位作者 Daouda Oubda Boureima Traoré Marcel Bawindsom Kébré Adama Zongo François Zougmoré 《Advances in Materials Physics and Chemistry》 2023年第8期151-160,共10页
In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the... In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the cell. We have shown in this study that electron mobility is strongly influenced by the thickness of the absorber, since electron velocity is reduced by thickness. The influence of the defect density shows that above 10<sup>16</sup> cm<sup>-3</sup> all the electrical parameters are affected by the defects. The band discontinuity at the interface generally plays a crucial role in the charge transport phenomenon. The importance of this study is to enable the development of good quality perovskite solar cells, while taking into account the parameters that limit solar cell performance. 展开更多
关键词 Defect Density Electron Mobility Band Gap PEROVSKITE SCAPS-1D Software
下载PDF
Evaluation of the Performance of Lithium-Ion Accumulators for Photovoltaic Energy Storage
19
作者 Toussaint Tilado Guingane Dominique Bonkoungou +4 位作者 Eric Korsaga Dieudonné Simpore Soumaila Ouedraogo Zacharie Koalaga François Zougmore 《Energy and Power Engineering》 2023年第12期517-526,共10页
In a context of climate change exacerbated by the increasing scarcity of fossil fuels, renewable energies, in particular photovoltaic solar energy, offer a promising alternative. Solar energy is non-polluting, globall... In a context of climate change exacerbated by the increasing scarcity of fossil fuels, renewable energies, in particular photovoltaic solar energy, offer a promising alternative. Solar energy is non-polluting, globally available and the most widely distributed resource on Earth. However, the intermittency of this energy source considerably limits its expansion. To solve this problem, storage techniques are being used, in particular, electrochemical storage using lithium-ion batteries. In this article, we will evaluate the performance of lithium-ion batteries when integrated into a photovoltaic grid. To do this, modelling and simulation of a photovoltaic system connected to a lithium-ion battery storage system will be carried out using MATLAB/Simulink software. A diagnostic of the energy consumption of the Kaya Polytechnic University Centre will be carried out, and the data will then be used in the simulator to observe the behaviour of the PV-Lion system. The results obtained indicate that lithium-ion batteries can effectively meet the centre’s energy demand. In addition, it was observed that lithium-ion batteries perform better under high energy demand than the other battery technologies studied. Successive storage systems with the same capacity but different battery technologies were compared. It was found that these storage systems can handle a maximum power of 4 × 10<sup>5</sup> W for lead-acid batteries, 6.5 × 10<sup>5</sup> W for nickel-cadmium batteries, 8.5 × 10<sup>5</sup> W for nickel-metal-hydride batteries, and more than 10 × 10<sup>5</sup> W for lithium-ion technology. 展开更多
关键词 Photovoltaic Energy Energy Storage Lithium-Ion Accumulator MODELING MATLAB/Simulink Simulation
下载PDF
Realization of High Efficient Ferroelectric Perovskite Nanoparticles in Biopolymer-Matrix Solar Cells under Low Lighting
20
作者 Rémi Ndioukane Fanta Baldé +4 位作者 Ndéye Coumba Yandé Fall Abdoul Kadri Diallo Diouma Kobor Jeanne Solard Laurence Motte 《Journal of Modern Physics》 2023年第7期1019-1033,共15页
The idea to use ferroelectric materials (PZN-PT) came from the fact that the ferroelectric nature could facilitate electric charges accumulation on the interfaces of the solar cell. Thus, it would increase the open ci... The idea to use ferroelectric materials (PZN-PT) came from the fact that the ferroelectric nature could facilitate electric charges accumulation on the interfaces of the solar cell. Thus, it would increase the open circuit voltage V<sub>oc</sub> which could reach more than 10 V. This would directly impact the efficiency which is proportional to Voc</sub>, thus hoping to obtain solar efficiency never equaled by the halide perovskites which are less stable and less resistant in aggressive environments. In this work, the solar cells produced gave an exceptional record efficiency of 39.32% with a very high open circuit voltage (Voc</sub>) of 3.50 V, a short-circuit current density (J<sub>sc</sub>) of 0.118 mA/cm<sup>2</sup> and an FF of 0.72 measured in the positive polarization direction under 3825 lux (5.6 W/m<sup>2</sup>) lighting. The negative polarization direction under 4781 lux (7 W/m2) lightning gave a current density of 2 mA/cm<sup>2</sup>, an open circuit voltage of 2.30 V and an FF of 0.35. 展开更多
关键词 PEROVSKITE NANOPARTICLES Thin Film Ferrophotovoltaic Solar Cell
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部