Liver fibrosis continues to be a major health problem worldwide due to lack of effective therapy.If the etiology cannot be eliminated,liver fibrosis progresses to cirrhosis and eventually to liver failure or malignanc...Liver fibrosis continues to be a major health problem worldwide due to lack of effective therapy.If the etiology cannot be eliminated,liver fibrosis progresses to cirrhosis and eventually to liver failure or malignancy;both are associated with a fatal outcome.Liver transplantation,the only curative therapy,is still mostly unavailable.Liver fibrosis was shown to be a reversible process;however,complete reversibility remains debatable.Recently,the molecular markers of liver fibrosis were shown to be transmitted across generations.Epigenetic mechanisms including DNA methylation,histone posttranslational modifications and noncoding RNA have emerged as major determinants of gene expression during liver fibrogenesis and carcinogenesis.Furthermore,epigenetic mechanisms have been shown to be transmitted through mitosis and meiosis to daughter cells and subsequent generations.However,the exact epigenetic regulation of complete liver fibrosis resolution and inheritance has not been fully elucidated.This communication will highlight the recent advances in the search for delineating the mechanisms governing resolution of liver fibrosis and the potential for multigenerational and transgenerational transmission of fibrosis markers.The fact that epigenetic changes,unlike genetic mutations,are reversible and can be modulated pharmacologically underscores the unique opportunity to develop effective therapy to completely reverse liver fibrosis,to prevent the development of malignancy and to regulate heritability of fibrosis phenotype.展开更多
At present, substantial amounts of low-cost, fibrous co-products are incorporated into pig diets to reduce the cost of raising swine. However, diets that are rich in fiber are of low nutritive value because pigs canno...At present, substantial amounts of low-cost, fibrous co-products are incorporated into pig diets to reduce the cost of raising swine. However, diets that are rich in fiber are of low nutritive value because pigs cannot degrade dietary fiber. In addition, high-fiber diets have been associated with reduced nutrient utilization and pig performance. However, recent reports are often contradictory and the negative effects of high-fiber diets are influenced by the fiber source, type, and inclusion level. In addition, the effects of dietary fiber on pig growth and physiological responses are often confounded by the many analytical methods that are used to measure dietary fiber and its components. Several strategies have been employed to ameliorate the negative effects associated with the ingestion of high-fiber diets in pigs and to improve the nutritive value of such diets. Exogenous fiber-degrading enzymes are widely used to improve nutrient utilization and pig performance. However, the results of research reports have not been consistent and there is a need to elucidate the mode of action of exogenous enzymes on the metabolic and physiological responses in pigs that are fed high-fiber diets. On the other hand, dietary fiber is increasingly used as a means of promoting pig gut health and gestating sow welfare. In this review, dietary fiber and its effects on pig nutrition, gut physiology, and sow welfare are discussed. In addition, areas that need further research are suggested to gain more insight into dietary fiber and into the use of exogenous enzymes to improve the utilization of high-fiber diets by oils.展开更多
Hyperoxaluria is characterized by an increased urinary excretion of oxalate. Primary and secondary hyperoxaluria are two distinct clinical expressions of hyperoxaluria. Primary hyperoxaluria is an inherited error of m...Hyperoxaluria is characterized by an increased urinary excretion of oxalate. Primary and secondary hyperoxaluria are two distinct clinical expressions of hyperoxaluria. Primary hyperoxaluria is an inherited error of metabolismdue to defective enzyme activity. In contrast, secondary hyperoxaluria is caused by increased dietary ingestion of oxalate, precursors of oxalate or alteration in intestinal microfora. The disease spectrum extends from recurrent kidney stones, nephrocalcinosis and urinary tract infections to chronic kidney disease and end stage renal disease. When calcium oxalate burden exceeds the renal excretory ability, calcium oxalate starts to deposit in various organ systems in a process called systemic oxalosis. Increased urinary oxalate levels help to make the diagnosis while plasma oxalate levels are likely to be more accurate when patients develop chronic kidney disease. Defnitivediagnosis of primary hyperoxaluria is achieved by genetic studies and if genetic studies prove inconclusive, liver biopsy is undertaken to establish diagnosis. Diagnostic clues pointing towards secondary hyperoxaluria are a supportive dietary history and tests to detect increased intestinal absorption of oxalate. Conservative treatment for both types of hyperoxaluria includes vigorous hydration and crystallization inhibitors to decrease calcium oxalate precipitation. Pyridoxine is also found to be helpful in approximately 30% patients with primary hyperoxaluriatype 1. Liver-kidney and isolated kidney transplantation are the treatment of choice in primary hyperoxaluria type 1 and type 2 respectively. Data is scarce on role of transplantation in primary hyperoxaluria type 3 where there are no reports of end stage renal disease so far. There are ongoing investigations into newer modalities of diagnosis and treatment of hyperoxaluria. Clinical differentiation between primary and secondary hyperoxaluria and further between the types of primary hyperoxaluria is very important because of implications in treatment and diagnosis. H展开更多
Hepatorenal syndrome (HRS) is a "functional" and reversible form of renal failure that occurs in patients with advanced chronic liver disease. The distinctive hallmark feature of HRS is the intense renal vas...Hepatorenal syndrome (HRS) is a "functional" and reversible form of renal failure that occurs in patients with advanced chronic liver disease. The distinctive hallmark feature of HRS is the intense renal vasoconstriction caused by interactions between systemic and portal hemodynamics. This results in activation of vasoconstrictors and suppression of vasodilators in the renal circulation. Epidemiology, pathophysiology, as well as current and emerging therapies of HRS are discussed in this review.展开更多
Adhesions are the most frequent complication of abdominopelvic surgery,yet the extent of the problem,and its serious consequences,has not been adequately recognized.Adhesions evolved as a life-saving mecha-nism to lim...Adhesions are the most frequent complication of abdominopelvic surgery,yet the extent of the problem,and its serious consequences,has not been adequately recognized.Adhesions evolved as a life-saving mecha-nism to limit the spread of intraperitoneal inflammatory conditions.Three different pathophysiological mechanisms can independently trigger adhesion formation.Mesothelial cell injury and loss during operations,tissue hypoxia and inflammation each promotes adhesion formation separately,and potentiate the effect of each other.Studies have repeatedly demonstrated that interruption of a single pathway does not completely prevent adhesion formation.This review summarizes the pathogenesis of adhesion formation and the results of single gene therapy interventions.It explores the prom-ising role of combinatorial gene therapy and vector modif ications for the prevention of adhesion formation in order to stimulate new ideas and encourage rapid advancements in this field.展开更多
This study presents a laboratory investigation of load-settlement behaviour of a strip footing resting on iron ore tailings used as a structural fill.The footing was placed at various depths in the tailings bed.The re...This study presents a laboratory investigation of load-settlement behaviour of a strip footing resting on iron ore tailings used as a structural fill.The footing was placed at various depths in the tailings bed.The relative density of the tailings was varied as D_r = 50%,70%and 90%.An incremental load was applied on the footing while observing the settlement until the failure took place.The results obtained for tailings were compared with those for the sandy soil.It is observed that the load-bearing capacity and stiffness increase with an increase in footing embedment depth and relative density.Compared to load-settlement behaviour of Perth sandy soil,the tailings fill could have as high as 22 times and 13.5 times the load-bearing capacity and stiffness,respectively.Therefore,the replacement of sandy soil with iron ore tailings for structural fills is cost-effective,and moreover,this application contributes to environmental sustainability in construction.展开更多
A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel,based on the nonlinear adaptive optimal control(NAOC).A nonlinear 4-DOF model was initially developed,then ...A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel,based on the nonlinear adaptive optimal control(NAOC).A nonlinear 4-DOF model was initially developed,then it was simplified to a 2-DOF model with reasonable assumptions to design observer and optimal controllers.Then a simplified model was developed for steering system.The numerical simulations were carried out using vehicle parameters for standard maneuvers in dry and wet road conditions.Moreover,the hardware in the loop method was implemented to prove the controller ability in realistic conditions.Simulation results obviously show the effectiveness of NAOC on vehicle handling and reveal that the proposed controller can significantly improve vehicle handling during severe maneuvers.展开更多
Tissue engineering is an interdisciplinary field that integrates medical,biological,and engineering expertise to restore or regenerate the functionality of healthy tissues and organs.The three fundamental pillars of t...Tissue engineering is an interdisciplinary field that integrates medical,biological,and engineering expertise to restore or regenerate the functionality of healthy tissues and organs.The three fundamental pillars of tissue engineering are scaffolds,cells,and biomolecules.Electrospun nanofibers have been successfully used as scaffolds for a variety of tissue engineering applications because they are biomimetic of the natural,fibrous extracellular matrix(ECM)and contain a three-dimensional(3D)network of interconnected pores.In this review,we provide an overview of the electrospinning process,its principles,and the application of the resultant electrospun nanofibers for tissue engineering.We first briefly introduce the electrospinning process and then cover its principles and standard equipment for biomaterial fabrication.Next,we highlight the most important and recent advances related to the applications of electrospun nanofibers in tissue engineering,including skin,blood vessels,nerves,bone,cartilage,and tendon/ligament applications.Finally,we conclude with current advancements in the fabrication of electrospun nanofiber scaffolds and their biomedical applications in emerging areas.展开更多
Increasing plant density and improving N fertilizer rate along with the use of high density-tolerant genotypes would lead to maximizing maize(Zea mays L.) grain productivity per unit land area. The objective of this i...Increasing plant density and improving N fertilizer rate along with the use of high density-tolerant genotypes would lead to maximizing maize(Zea mays L.) grain productivity per unit land area. The objective of this investigation was to match the functions of optimum plant density and adequate nitrogen fertilizer application to produce the highest possible yields per unit area with the greatest maize genotype efficiency. Six maize inbred lines differing in tolerance to low N and high density(D) [three tolerant(T); L-17, L-18, L-53,and three sensitive(S); L-29, L-54, L-55] were chosen for diallel crosses. Parents and crosses were evaluated in the 2012 and 2013 seasons under three plant densities: low(47,600),medium(71,400), and high(95,200) plants ha-1and three N fertilization rates: low(no N addition), medium(285 kg N ha-1) and high(570 kg N ha-1). The T × T crosses were superior to the S × S and T × S crosses under the low N–high D environment in most studied traits across seasons. The relationships between the nine environments and grain yield per hectare(GYPH) showed near-linear regression functions for inbreds L54, L29, and L55 and hybrids L18 × L53 and L18 × L55 with the highest GYPH at a density of47,600 plants ha-1and N rate of 570 kg N ha-1and a curvilinear relationship for inbreds L17, L18, and L53 and the rest of the hybrids with the highest GYPH at a density of95,200 plants ha-1combined with an N rate of 570 kg N ha-1. Cross L17 × L54 gave the highest grain yield in this study under both high N–high-D(19.9 t ha-1) and medium N–high-D environments(17.6 t ha-1).展开更多
One of the most basic and difficult areas of computer vision and image understanding applications is still object detection. Deep neural network models and enhanced object representation have led to significant progre...One of the most basic and difficult areas of computer vision and image understanding applications is still object detection. Deep neural network models and enhanced object representation have led to significant progress in object detection. This research investigates in greater detail how object detection has changed in the recent years in the deep learning age. We provide an overview of the literature on a range of cutting-edge object identification algorithms and the theoretical underpinnings of these techniques. Deep learning technologies are contributing to substantial innovations in the field of object detection. While Convolutional Neural Networks (CNN) have laid a solid foundation, new models such as You Only Look Once (YOLO) and Vision Transformers (ViTs) have expanded the possibilities even further by providing high accuracy and fast detection in a variety of settings. Even with these developments, integrating CNN, YOLO and ViTs, into a coherent framework still poses challenges with juggling computing demand, speed, and accuracy especially in dynamic contexts. Real-time processing in applications like surveillance and autonomous driving necessitates improvements that take use of each model type’s advantages. The goal of this work is to provide an object detection system that maximizes detection speed and accuracy while decreasing processing requirements by integrating YOLO, CNN, and ViTs. Improving real-time detection performance in changing weather and light exposure circumstances, as well as detecting small or partially obscured objects in crowded cities, are among the goals. We provide a hybrid architecture which leverages CNN for robust feature extraction, YOLO for rapid detection, and ViTs for remarkable global context capture via self-attention techniques. Using an innovative training regimen that prioritizes flexible learning rates and data augmentation procedures, the model is trained on an extensive dataset of urban settings. Compared to solo YOLO, CNN, or ViTs models, the suggested model exhi展开更多
This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the exper...This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the experimental techniques, such as X-ray diffraction (XRD), Infrared spectroscopy (IR), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Differential Thermal Analysis and Thermogravimetry (DTA-TG), Brunauer, Emett and Teller method (BET), laser particle size analysis and Scanning Electron Microscope (SEM). The main results of these analyses reveal that the two clay samples mainly contain quartz (52.91% for ME1 and 51.72% for ME2), kaolinite (36.60% for ME1 and 41.6% for ME2) and associated phases, namely goethite and hematite (13.47% for ME1 and 11.00% for ME2). The specific surface values obtained for samples ME1 and ME2 are 34.78 m2/g and 29.18 m2/g respectively. The results obtained show that the samples studied belong to the kaolinite family. After calcination, they could have good pozzolanic activity and therefore be used in the manufacture of low-carbon cements.展开更多
Leafhoppers (jassids) are well-known pests of vegetable crops in Niger. They are often part of a parasitic complex that causes varying degrees of damage. Over the last two crop years, the Niamey region has seen a heav...Leafhoppers (jassids) are well-known pests of vegetable crops in Niger. They are often part of a parasitic complex that causes varying degrees of damage. Over the last two crop years, the Niamey region has seen a heavy outbreak of leaf hoppers on okra and guinea sorrel. These insects alone have caused spectacular damage, resulting in losses ranging from 50% to 100% of unharvested plants. Following this observation, infested fields were surveyed, specimens sampled, and the responsible species identified. Two sites were surveyed in the city of Niamey. At each site, two plots of okra and two of guinea sorrel were visited. Fifty (50) plants were randomly sampled using the double “W” method per plot. The sampled plants were used for active and passive leaf hopper capture, damage description and loss assessment. Captured leaf hoppers were identified based on their morphology observed with a binocular magnifying glass and compared with the data in the identification keys. The symptoms observed in the plots were yellowing, leaf curling and drying, stunting, abortion of flowers and immature fruit and very low production. Identification results revealed the single species Amrasca biguttula (Ishida, 1913), which can be considered a new invasive species in Niger. Further confirmation of this identification by molecular tests, the distribution of the pest in Niger and the development of appropriate control methods would yield good prospects.展开更多
Diabetic wound(DW)healing is a major clinical challenge due to multifactorial complications leading to prolonged inflammation.Electrospun nanofibrous(NF)membranes,due to special structural features,are promising bioma...Diabetic wound(DW)healing is a major clinical challenge due to multifactorial complications leading to prolonged inflammation.Electrospun nanofibrous(NF)membranes,due to special structural features,are promising biomaterials capable to promote DW healing through the delivery of active agents in a controlled manner.Herein,we report a multifunctional composite NF membrane loaded with ZnO nanoparticles(NP)and oregano essential oil(OEO),employing a new loading strategy,capable to sustainedly co-deliver bioactive agents.Physicochemical characterization revealed the successful fabrication of loaded nanofibers with strong in vitro anti-bacterial and anti-oxidant activities.Furthermore,in vivo wound healing confirmed the potential of bioactive NF membranes in epithelialization and granulation tissue formation.The angiogenesis was greatly prompted by the bioactive NF membranes through expression of vascular endothelial growth factor(VEGF).Moreover,the proposed NF membrane successfully terminated the inflammatory cycle by downregulating the pro-inflammatory cytokines interleukin6(IL-6)and matrix metalloproteinases-9(MMP-9).In vitro and in vivo studies revealed the proposed NF membrane is a promising dressing material for the healing of DW.展开更多
In this work, the Styrene-butadiene rubber (SBR)/lead oxide and the Styrene-butadiene rubber (SBR)/lead nitrate composites were prepared as gamma-radiation shielding materials. The investigated materials were prepared...In this work, the Styrene-butadiene rubber (SBR)/lead oxide and the Styrene-butadiene rubber (SBR)/lead nitrate composites were prepared as gamma-radiation shielding materials. The investigated materials were prepared with three different weight percentage of lead oxide and lead nitrate (30, 50 and 70 wt%). The mass attenuation coefficients (μ<sub>m</sub>) for all composite samples were measured experimentally at 511 and 661.6 keV photon energies. The measurements were made by performing transmission experiments with a 3'' × 3'' NaI (Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of <sup>137</sup>Cs. The effective atomic numbers (Z<sub>eff</sub>) and the effective electron densities (N<sub>eff</sub>) were determined experimentally. Also they were determined theoretically using the obtained μ<sub>m</sub> values for the studied composites samples by WinXCom program. The obtained results show that the experimental values of the composites are found to be in a good agreement with the theoretical values. It is recognized that the mass attenuation coefficient (μ<sub>m</sub>), effective atomic numbers (Z<sub>eff</sub>) and the effective electron densities (N<sub>eff</sub>) are increased in the composite samples which contain lead oxides than which contain lead nitrates. Finally, the Styrene-butadiene rubber (SBR)/lead oxide is better than Styrene-butadiene rubber (SBR)/lead nitrate polymer as gamma radiation shielding.展开更多
Field training is the backbone of the teacher-preparation process.Its importance stems from the goals that colleges of education aim to achieve,which include bridging the gap between theory and practice and aligning w...Field training is the backbone of the teacher-preparation process.Its importance stems from the goals that colleges of education aim to achieve,which include bridging the gap between theory and practice and aligning with contemporary educational trends during teacher training.Currently,trainee students attendance in field training is recordedmanually through signatures on attendance sheets.However,thismethod is prone to impersonation,time wastage,and misplacement.Additionally,traditional methods of evaluating trainee students are often susceptible to human errors during the evaluation and scoring processes.Field training also lacks modern technology that the supervisor can use in case of his absence from school to monitor the trainee students’implementation of the required activities and tasks.These shortcomings do not meet the needs of the digital era that universities are currently experiencing.As a result,this paper presents a smart management system for field training based on Internet of Things(IoT)and mobile technology.It includes three subsystems:attendance,monitoring,and evaluation.The attendance subsystem uses an R307 fingerprint sensor to record trainee students’attendance.The Arduino Nano microcontroller transmits attendance data to the proposed Android application via an ESP-12F Wi-Fi module,which then forwards it to the Firebase database for storage.The monitoring subsystem utilizes Global Positioning System(GPS)technology to continually track trainee students’locations,ensuring they remain at the school during training.It also enables remote communication between trainee students and supervisors via audio,video,or text by integrating video call and chat technologies.The evaluation subsystem is based on three items:an online exam,attendance,and implementation of required activities and tasks.Experimental results have demonstrated the accuracy and efficiency of the proposed management system in recording attendance,as well as in monitoring and evaluating trainee students during field traiing.展开更多
All the compositions in the(1-x)Mg_(0.95)Ni_(0.05)Ti_(0.98)Zr_(0.02)O_3–xCa_(0.6)La_(0.8/3)TiO_3(0 ≤ x ≤ 0.2) series were fabricated using solid state sintering route. Mg_(0.95)Ni_(0.05)Ti_(0.98)Zr_(0.02)O_3 posses...All the compositions in the(1-x)Mg_(0.95)Ni_(0.05)Ti_(0.98)Zr_(0.02)O_3–xCa_(0.6)La_(0.8/3)TiO_3(0 ≤ x ≤ 0.2) series were fabricated using solid state sintering route. Mg_(0.95)Ni_(0.05)Ti_(0.98)Zr_(0.02)O_3 possessed excellent microwave dielectric properties with ε_r ≈ 17.1, Q_uf_0 ≈ 195855 GHz, and τ_f ≈-46 ppm/℃. t f was tuned through zero by mixing with Ca_(0.6)La_(0.8/3)TiO_3. In the present study, τ_f ≈-2 ppm/℃ with er ≈ 23.9 and high Q_uf_0 ≈ 115870 GHz was achieved for x = 0.15, i.e., for a mixture of 85% Mg_(0.95)Ni_(0.05)Ti_(0.98)Zr_(0.02)O_3–xCa_(0.6)La_(0.8/3)TiO_3.展开更多
基金Egyptian Science and Technology Development Fund under Project 1550
文摘Liver fibrosis continues to be a major health problem worldwide due to lack of effective therapy.If the etiology cannot be eliminated,liver fibrosis progresses to cirrhosis and eventually to liver failure or malignancy;both are associated with a fatal outcome.Liver transplantation,the only curative therapy,is still mostly unavailable.Liver fibrosis was shown to be a reversible process;however,complete reversibility remains debatable.Recently,the molecular markers of liver fibrosis were shown to be transmitted across generations.Epigenetic mechanisms including DNA methylation,histone posttranslational modifications and noncoding RNA have emerged as major determinants of gene expression during liver fibrogenesis and carcinogenesis.Furthermore,epigenetic mechanisms have been shown to be transmitted through mitosis and meiosis to daughter cells and subsequent generations.However,the exact epigenetic regulation of complete liver fibrosis resolution and inheritance has not been fully elucidated.This communication will highlight the recent advances in the search for delineating the mechanisms governing resolution of liver fibrosis and the potential for multigenerational and transgenerational transmission of fibrosis markers.The fact that epigenetic changes,unlike genetic mutations,are reversible and can be modulated pharmacologically underscores the unique opportunity to develop effective therapy to completely reverse liver fibrosis,to prevent the development of malignancy and to regulate heritability of fibrosis phenotype.
文摘At present, substantial amounts of low-cost, fibrous co-products are incorporated into pig diets to reduce the cost of raising swine. However, diets that are rich in fiber are of low nutritive value because pigs cannot degrade dietary fiber. In addition, high-fiber diets have been associated with reduced nutrient utilization and pig performance. However, recent reports are often contradictory and the negative effects of high-fiber diets are influenced by the fiber source, type, and inclusion level. In addition, the effects of dietary fiber on pig growth and physiological responses are often confounded by the many analytical methods that are used to measure dietary fiber and its components. Several strategies have been employed to ameliorate the negative effects associated with the ingestion of high-fiber diets in pigs and to improve the nutritive value of such diets. Exogenous fiber-degrading enzymes are widely used to improve nutrient utilization and pig performance. However, the results of research reports have not been consistent and there is a need to elucidate the mode of action of exogenous enzymes on the metabolic and physiological responses in pigs that are fed high-fiber diets. On the other hand, dietary fiber is increasingly used as a means of promoting pig gut health and gestating sow welfare. In this review, dietary fiber and its effects on pig nutrition, gut physiology, and sow welfare are discussed. In addition, areas that need further research are suggested to gain more insight into dietary fiber and into the use of exogenous enzymes to improve the utilization of high-fiber diets by oils.
文摘Hyperoxaluria is characterized by an increased urinary excretion of oxalate. Primary and secondary hyperoxaluria are two distinct clinical expressions of hyperoxaluria. Primary hyperoxaluria is an inherited error of metabolismdue to defective enzyme activity. In contrast, secondary hyperoxaluria is caused by increased dietary ingestion of oxalate, precursors of oxalate or alteration in intestinal microfora. The disease spectrum extends from recurrent kidney stones, nephrocalcinosis and urinary tract infections to chronic kidney disease and end stage renal disease. When calcium oxalate burden exceeds the renal excretory ability, calcium oxalate starts to deposit in various organ systems in a process called systemic oxalosis. Increased urinary oxalate levels help to make the diagnosis while plasma oxalate levels are likely to be more accurate when patients develop chronic kidney disease. Defnitivediagnosis of primary hyperoxaluria is achieved by genetic studies and if genetic studies prove inconclusive, liver biopsy is undertaken to establish diagnosis. Diagnostic clues pointing towards secondary hyperoxaluria are a supportive dietary history and tests to detect increased intestinal absorption of oxalate. Conservative treatment for both types of hyperoxaluria includes vigorous hydration and crystallization inhibitors to decrease calcium oxalate precipitation. Pyridoxine is also found to be helpful in approximately 30% patients with primary hyperoxaluriatype 1. Liver-kidney and isolated kidney transplantation are the treatment of choice in primary hyperoxaluria type 1 and type 2 respectively. Data is scarce on role of transplantation in primary hyperoxaluria type 3 where there are no reports of end stage renal disease so far. There are ongoing investigations into newer modalities of diagnosis and treatment of hyperoxaluria. Clinical differentiation between primary and secondary hyperoxaluria and further between the types of primary hyperoxaluria is very important because of implications in treatment and diagnosis. H
文摘Hepatorenal syndrome (HRS) is a "functional" and reversible form of renal failure that occurs in patients with advanced chronic liver disease. The distinctive hallmark feature of HRS is the intense renal vasoconstriction caused by interactions between systemic and portal hemodynamics. This results in activation of vasoconstrictors and suppression of vasodilators in the renal circulation. Epidemiology, pathophysiology, as well as current and emerging therapies of HRS are discussed in this review.
基金Supported by The United States-Egypt Science and Technology Joint Fund in cooperation with United States Department of Agriculturethe Egyptian Science and Technology Development Fund under Project 739
文摘Adhesions are the most frequent complication of abdominopelvic surgery,yet the extent of the problem,and its serious consequences,has not been adequately recognized.Adhesions evolved as a life-saving mecha-nism to limit the spread of intraperitoneal inflammatory conditions.Three different pathophysiological mechanisms can independently trigger adhesion formation.Mesothelial cell injury and loss during operations,tissue hypoxia and inflammation each promotes adhesion formation separately,and potentiate the effect of each other.Studies have repeatedly demonstrated that interruption of a single pathway does not completely prevent adhesion formation.This review summarizes the pathogenesis of adhesion formation and the results of single gene therapy interventions.It explores the prom-ising role of combinatorial gene therapy and vector modif ications for the prevention of adhesion formation in order to stimulate new ideas and encourage rapid advancements in this field.
文摘This study presents a laboratory investigation of load-settlement behaviour of a strip footing resting on iron ore tailings used as a structural fill.The footing was placed at various depths in the tailings bed.The relative density of the tailings was varied as D_r = 50%,70%and 90%.An incremental load was applied on the footing while observing the settlement until the failure took place.The results obtained for tailings were compared with those for the sandy soil.It is observed that the load-bearing capacity and stiffness increase with an increase in footing embedment depth and relative density.Compared to load-settlement behaviour of Perth sandy soil,the tailings fill could have as high as 22 times and 13.5 times the load-bearing capacity and stiffness,respectively.Therefore,the replacement of sandy soil with iron ore tailings for structural fills is cost-effective,and moreover,this application contributes to environmental sustainability in construction.
文摘A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel,based on the nonlinear adaptive optimal control(NAOC).A nonlinear 4-DOF model was initially developed,then it was simplified to a 2-DOF model with reasonable assumptions to design observer and optimal controllers.Then a simplified model was developed for steering system.The numerical simulations were carried out using vehicle parameters for standard maneuvers in dry and wet road conditions.Moreover,the hardware in the loop method was implemented to prove the controller ability in realistic conditions.Simulation results obviously show the effectiveness of NAOC on vehicle handling and reveal that the proposed controller can significantly improve vehicle handling during severe maneuvers.
基金financially surpported by the Fundamental Research Funds for the Central Universities(No.2232019A3-07)the National Key Research Program of China(Nos.2016YFA0201702 of 2016YFA0201700)+2 种基金the National Nature Science Foundation of China(No.31771023)the Science and Technology Commission of Shanghai Municipality(No.19441902600)the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University(No.CUSF-DH-D-2020061)。
文摘Tissue engineering is an interdisciplinary field that integrates medical,biological,and engineering expertise to restore or regenerate the functionality of healthy tissues and organs.The three fundamental pillars of tissue engineering are scaffolds,cells,and biomolecules.Electrospun nanofibers have been successfully used as scaffolds for a variety of tissue engineering applications because they are biomimetic of the natural,fibrous extracellular matrix(ECM)and contain a three-dimensional(3D)network of interconnected pores.In this review,we provide an overview of the electrospinning process,its principles,and the application of the resultant electrospun nanofibers for tissue engineering.We first briefly introduce the electrospinning process and then cover its principles and standard equipment for biomaterial fabrication.Next,we highlight the most important and recent advances related to the applications of electrospun nanofibers in tissue engineering,including skin,blood vessels,nerves,bone,cartilage,and tendon/ligament applications.Finally,we conclude with current advancements in the fabrication of electrospun nanofiber scaffolds and their biomedical applications in emerging areas.
文摘Increasing plant density and improving N fertilizer rate along with the use of high density-tolerant genotypes would lead to maximizing maize(Zea mays L.) grain productivity per unit land area. The objective of this investigation was to match the functions of optimum plant density and adequate nitrogen fertilizer application to produce the highest possible yields per unit area with the greatest maize genotype efficiency. Six maize inbred lines differing in tolerance to low N and high density(D) [three tolerant(T); L-17, L-18, L-53,and three sensitive(S); L-29, L-54, L-55] were chosen for diallel crosses. Parents and crosses were evaluated in the 2012 and 2013 seasons under three plant densities: low(47,600),medium(71,400), and high(95,200) plants ha-1and three N fertilization rates: low(no N addition), medium(285 kg N ha-1) and high(570 kg N ha-1). The T × T crosses were superior to the S × S and T × S crosses under the low N–high D environment in most studied traits across seasons. The relationships between the nine environments and grain yield per hectare(GYPH) showed near-linear regression functions for inbreds L54, L29, and L55 and hybrids L18 × L53 and L18 × L55 with the highest GYPH at a density of47,600 plants ha-1and N rate of 570 kg N ha-1and a curvilinear relationship for inbreds L17, L18, and L53 and the rest of the hybrids with the highest GYPH at a density of95,200 plants ha-1combined with an N rate of 570 kg N ha-1. Cross L17 × L54 gave the highest grain yield in this study under both high N–high-D(19.9 t ha-1) and medium N–high-D environments(17.6 t ha-1).
文摘One of the most basic and difficult areas of computer vision and image understanding applications is still object detection. Deep neural network models and enhanced object representation have led to significant progress in object detection. This research investigates in greater detail how object detection has changed in the recent years in the deep learning age. We provide an overview of the literature on a range of cutting-edge object identification algorithms and the theoretical underpinnings of these techniques. Deep learning technologies are contributing to substantial innovations in the field of object detection. While Convolutional Neural Networks (CNN) have laid a solid foundation, new models such as You Only Look Once (YOLO) and Vision Transformers (ViTs) have expanded the possibilities even further by providing high accuracy and fast detection in a variety of settings. Even with these developments, integrating CNN, YOLO and ViTs, into a coherent framework still poses challenges with juggling computing demand, speed, and accuracy especially in dynamic contexts. Real-time processing in applications like surveillance and autonomous driving necessitates improvements that take use of each model type’s advantages. The goal of this work is to provide an object detection system that maximizes detection speed and accuracy while decreasing processing requirements by integrating YOLO, CNN, and ViTs. Improving real-time detection performance in changing weather and light exposure circumstances, as well as detecting small or partially obscured objects in crowded cities, are among the goals. We provide a hybrid architecture which leverages CNN for robust feature extraction, YOLO for rapid detection, and ViTs for remarkable global context capture via self-attention techniques. Using an innovative training regimen that prioritizes flexible learning rates and data augmentation procedures, the model is trained on an extensive dataset of urban settings. Compared to solo YOLO, CNN, or ViTs models, the suggested model exhi
文摘This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the experimental techniques, such as X-ray diffraction (XRD), Infrared spectroscopy (IR), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Differential Thermal Analysis and Thermogravimetry (DTA-TG), Brunauer, Emett and Teller method (BET), laser particle size analysis and Scanning Electron Microscope (SEM). The main results of these analyses reveal that the two clay samples mainly contain quartz (52.91% for ME1 and 51.72% for ME2), kaolinite (36.60% for ME1 and 41.6% for ME2) and associated phases, namely goethite and hematite (13.47% for ME1 and 11.00% for ME2). The specific surface values obtained for samples ME1 and ME2 are 34.78 m2/g and 29.18 m2/g respectively. The results obtained show that the samples studied belong to the kaolinite family. After calcination, they could have good pozzolanic activity and therefore be used in the manufacture of low-carbon cements.
文摘Leafhoppers (jassids) are well-known pests of vegetable crops in Niger. They are often part of a parasitic complex that causes varying degrees of damage. Over the last two crop years, the Niamey region has seen a heavy outbreak of leaf hoppers on okra and guinea sorrel. These insects alone have caused spectacular damage, resulting in losses ranging from 50% to 100% of unharvested plants. Following this observation, infested fields were surveyed, specimens sampled, and the responsible species identified. Two sites were surveyed in the city of Niamey. At each site, two plots of okra and two of guinea sorrel were visited. Fifty (50) plants were randomly sampled using the double “W” method per plot. The sampled plants were used for active and passive leaf hopper capture, damage description and loss assessment. Captured leaf hoppers were identified based on their morphology observed with a binocular magnifying glass and compared with the data in the identification keys. The symptoms observed in the plots were yellowing, leaf curling and drying, stunting, abortion of flowers and immature fruit and very low production. Identification results revealed the single species Amrasca biguttula (Ishida, 1913), which can be considered a new invasive species in Niger. Further confirmation of this identification by molecular tests, the distribution of the pest in Niger and the development of appropriate control methods would yield good prospects.
基金This research was supported by the Fundamental Research Funds for the Central Universities(2232019A3-07)National Key Research Program of China(2016YFC1100202)+1 种基金National Natural Science Foundation of China(No.31771023)Science and Technology Commission of Shanghai Municipality(No.19441902600,20S31900900).
文摘Diabetic wound(DW)healing is a major clinical challenge due to multifactorial complications leading to prolonged inflammation.Electrospun nanofibrous(NF)membranes,due to special structural features,are promising biomaterials capable to promote DW healing through the delivery of active agents in a controlled manner.Herein,we report a multifunctional composite NF membrane loaded with ZnO nanoparticles(NP)and oregano essential oil(OEO),employing a new loading strategy,capable to sustainedly co-deliver bioactive agents.Physicochemical characterization revealed the successful fabrication of loaded nanofibers with strong in vitro anti-bacterial and anti-oxidant activities.Furthermore,in vivo wound healing confirmed the potential of bioactive NF membranes in epithelialization and granulation tissue formation.The angiogenesis was greatly prompted by the bioactive NF membranes through expression of vascular endothelial growth factor(VEGF).Moreover,the proposed NF membrane successfully terminated the inflammatory cycle by downregulating the pro-inflammatory cytokines interleukin6(IL-6)and matrix metalloproteinases-9(MMP-9).In vitro and in vivo studies revealed the proposed NF membrane is a promising dressing material for the healing of DW.
文摘In this work, the Styrene-butadiene rubber (SBR)/lead oxide and the Styrene-butadiene rubber (SBR)/lead nitrate composites were prepared as gamma-radiation shielding materials. The investigated materials were prepared with three different weight percentage of lead oxide and lead nitrate (30, 50 and 70 wt%). The mass attenuation coefficients (μ<sub>m</sub>) for all composite samples were measured experimentally at 511 and 661.6 keV photon energies. The measurements were made by performing transmission experiments with a 3'' × 3'' NaI (Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of <sup>137</sup>Cs. The effective atomic numbers (Z<sub>eff</sub>) and the effective electron densities (N<sub>eff</sub>) were determined experimentally. Also they were determined theoretically using the obtained μ<sub>m</sub> values for the studied composites samples by WinXCom program. The obtained results show that the experimental values of the composites are found to be in a good agreement with the theoretical values. It is recognized that the mass attenuation coefficient (μ<sub>m</sub>), effective atomic numbers (Z<sub>eff</sub>) and the effective electron densities (N<sub>eff</sub>) are increased in the composite samples which contain lead oxides than which contain lead nitrates. Finally, the Styrene-butadiene rubber (SBR)/lead oxide is better than Styrene-butadiene rubber (SBR)/lead nitrate polymer as gamma radiation shielding.
文摘Field training is the backbone of the teacher-preparation process.Its importance stems from the goals that colleges of education aim to achieve,which include bridging the gap between theory and practice and aligning with contemporary educational trends during teacher training.Currently,trainee students attendance in field training is recordedmanually through signatures on attendance sheets.However,thismethod is prone to impersonation,time wastage,and misplacement.Additionally,traditional methods of evaluating trainee students are often susceptible to human errors during the evaluation and scoring processes.Field training also lacks modern technology that the supervisor can use in case of his absence from school to monitor the trainee students’implementation of the required activities and tasks.These shortcomings do not meet the needs of the digital era that universities are currently experiencing.As a result,this paper presents a smart management system for field training based on Internet of Things(IoT)and mobile technology.It includes three subsystems:attendance,monitoring,and evaluation.The attendance subsystem uses an R307 fingerprint sensor to record trainee students’attendance.The Arduino Nano microcontroller transmits attendance data to the proposed Android application via an ESP-12F Wi-Fi module,which then forwards it to the Firebase database for storage.The monitoring subsystem utilizes Global Positioning System(GPS)technology to continually track trainee students’locations,ensuring they remain at the school during training.It also enables remote communication between trainee students and supervisors via audio,video,or text by integrating video call and chat technologies.The evaluation subsystem is based on three items:an online exam,attendance,and implementation of required activities and tasks.Experimental results have demonstrated the accuracy and efficiency of the proposed management system in recording attendance,as well as in monitoring and evaluating trainee students during field traiing.
基金Directorate of Science and Technology (DOST) under itsdevelopmental scheme "Promotion and Support of R&D in Public & Private Sector, Phase 1 in Khyber Pakhtunhwa (R&D)" Funded Project 2011–2012 Peshawar, Pakistan
文摘All the compositions in the(1-x)Mg_(0.95)Ni_(0.05)Ti_(0.98)Zr_(0.02)O_3–xCa_(0.6)La_(0.8/3)TiO_3(0 ≤ x ≤ 0.2) series were fabricated using solid state sintering route. Mg_(0.95)Ni_(0.05)Ti_(0.98)Zr_(0.02)O_3 possessed excellent microwave dielectric properties with ε_r ≈ 17.1, Q_uf_0 ≈ 195855 GHz, and τ_f ≈-46 ppm/℃. t f was tuned through zero by mixing with Ca_(0.6)La_(0.8/3)TiO_3. In the present study, τ_f ≈-2 ppm/℃ with er ≈ 23.9 and high Q_uf_0 ≈ 115870 GHz was achieved for x = 0.15, i.e., for a mixture of 85% Mg_(0.95)Ni_(0.05)Ti_(0.98)Zr_(0.02)O_3–xCa_(0.6)La_(0.8/3)TiO_3.