RE 3Cu 3Sb 4(RE=Nd, Sm, Tb, Dy, Ho) was synthesized by arc melting method and their crystal structures were characterized by powder X ray method. The compounds crystallize in cubic system, Y 3Au 3Sb 4 type, sp...RE 3Cu 3Sb 4(RE=Nd, Sm, Tb, Dy, Ho) was synthesized by arc melting method and their crystal structures were characterized by powder X ray method. The compounds crystallize in cubic system, Y 3Au 3Sb 4 type, space group I43d (No.220), Pearson code cI40. The unit cell parameters are: Nd 3Cu 3Sb 4: a =0 96749(1) nm, V =0 90561(3) nm 3; Sm 3Cu 3Sb 4: a =0 96145(1) nm, V =0 88875(3) nm 3; Tb 3Cu 3Sb 4: a =0 95362(1) nm, V =0 86721(3) nm 3; Dy 3Cu 3Sb 4: a =0 95088(1) nm, V =0 85975(3) nm 3; Ho 3Cu 3Sb 4: a =0 9488(2) nm, V =0 8541(5) nm 3; Z =4. The structures are characterized by covalent bonded Cu Sb tetrahedra which form three dimensional networks by sharing corners. The rare earth atoms are distributed in the cages. The formula with the charge balance can be written as RE 3+ 3Cu 1+ 3Sb 3- 4 which are metallic Zintl phases having the weak metallic conductivity. The bonds have typical transitional features. General atomic coordination environment rules are followed. The unit cell parameters show the lanthanide contraction.展开更多
The Raman spectroscopy study of LnPS 4 series compounds with tetragonal xenotime structure shows that the symmetrical stretching vibration frequency ν 1 increases linearly with the lanthanide contraction, i.e.,...The Raman spectroscopy study of LnPS 4 series compounds with tetragonal xenotime structure shows that the symmetrical stretching vibration frequency ν 1 increases linearly with the lanthanide contraction, i.e., the decrease of the effective ionic radius r Ln 3+ ; moreover, the ν 1 frequency for the non tetragonal LuPS 4 falls off the line running through the corresponding values for the tetragonal phases. This observation is consistent with their structural chemistry modifications.展开更多
文摘RE 3Cu 3Sb 4(RE=Nd, Sm, Tb, Dy, Ho) was synthesized by arc melting method and their crystal structures were characterized by powder X ray method. The compounds crystallize in cubic system, Y 3Au 3Sb 4 type, space group I43d (No.220), Pearson code cI40. The unit cell parameters are: Nd 3Cu 3Sb 4: a =0 96749(1) nm, V =0 90561(3) nm 3; Sm 3Cu 3Sb 4: a =0 96145(1) nm, V =0 88875(3) nm 3; Tb 3Cu 3Sb 4: a =0 95362(1) nm, V =0 86721(3) nm 3; Dy 3Cu 3Sb 4: a =0 95088(1) nm, V =0 85975(3) nm 3; Ho 3Cu 3Sb 4: a =0 9488(2) nm, V =0 8541(5) nm 3; Z =4. The structures are characterized by covalent bonded Cu Sb tetrahedra which form three dimensional networks by sharing corners. The rare earth atoms are distributed in the cages. The formula with the charge balance can be written as RE 3+ 3Cu 1+ 3Sb 3- 4 which are metallic Zintl phases having the weak metallic conductivity. The bonds have typical transitional features. General atomic coordination environment rules are followed. The unit cell parameters show the lanthanide contraction.
文摘The Raman spectroscopy study of LnPS 4 series compounds with tetragonal xenotime structure shows that the symmetrical stretching vibration frequency ν 1 increases linearly with the lanthanide contraction, i.e., the decrease of the effective ionic radius r Ln 3+ ; moreover, the ν 1 frequency for the non tetragonal LuPS 4 falls off the line running through the corresponding values for the tetragonal phases. This observation is consistent with their structural chemistry modifications.