A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight a...A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight antineutrino detectors deployed in two near(560 m and 600 m flux-weighted baselines) and one far(1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay(IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.020(0.992±0.021) for the Huber+Mueller(ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4–6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.展开更多
基金Supported in part by the Ministry of Science and Technology of Chinathe United States Department of Energy,the Chinese Academy of Sciences+11 种基金the CAS Center for Excellence in Particle Physicsthe National Natural Science Foundation of Chinathe Guangdong provincial governmentthe Shenzhen municipal governmentthe China General Nuclear Power Groupthe Research Grants Council of the Hong Kong Special Administrative Region of Chinathe MOST and MOE in Taiwanthe U.S.National Science Foundationthe Ministry of Education,Youth and Sports of the Czech Republicthe Joint Institute of Nuclear Research in Dubna,Russiathe NSFC-RFBR joint research programthe National Commission for Scientific and Technological Research of Chile
文摘A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight antineutrino detectors deployed in two near(560 m and 600 m flux-weighted baselines) and one far(1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay(IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.020(0.992±0.021) for the Huber+Mueller(ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4–6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.