建立基于悬浮固化液相微萃取预处理的高效液相色谱-荧光检测法(SFODME-HPLC-FLD)用于两种植物生长素(吲哚丙酸和吲哚丁酸)的分析.实验考察各因素对萃取过程的影响,确定最佳条件:50μL十二醇(纯)为萃取剂,20.0 m L样品溶液(p H ...建立基于悬浮固化液相微萃取预处理的高效液相色谱-荧光检测法(SFODME-HPLC-FLD)用于两种植物生长素(吲哚丙酸和吲哚丁酸)的分析.实验考察各因素对萃取过程的影响,确定最佳条件:50μL十二醇(纯)为萃取剂,20.0 m L样品溶液(p H 3.0)、0.25 g·m L-1Na Cl、26℃、1 800 r·min-1条件下萃取10 min.结果表明,SFODME技术重现性好、灵敏度高,相对标准偏差小于8.66%,检测限为0.01 ng·m L-1,线性范围为0.02~60 ng·m L-1,加标回收率大于84.3%.方法快速、稳定、环境友好,适用于实际样品的检测.展开更多
Hybrid organic-inorganic perovskites have been the subject of recent intense interest due to advances in photovoltaic and other optoelectronic applications. However, their poor stability limits commercial market appli...Hybrid organic-inorganic perovskites have been the subject of recent intense interest due to advances in photovoltaic and other optoelectronic applications. However, their poor stability limits commercial market application We enhance water stability by post treatment preparation of hybrid metal halide perovskite nanocrystal-embedded polymethylmethacrylate (PM- MA) blend films. Through blending process without any cleaning of nanocrystals, crystalline hybrid organic-inorganic perovs-kite nanocrystals were incorporated into PMMA matrix with well-dispersion Passivation of PMMA on the surface of the per-ovskite nanocrystals results in decreased traps and a long photoluminescence (PL) lifetime despite the bromine vacancies in the crystal lattice. Moreover, such color purity and inherent high transmittance for fluorescence emission of perovskite nanocrystals will endow the films with promising potentials in diverse practice photonic applications.展开更多
To enhance the stability in humidity is very crucial to hybrid organic-inorganic lead halide perovskites in a broad range of applications. This report describes a coating stratergy of perovskite nanocrystals via poly-...To enhance the stability in humidity is very crucial to hybrid organic-inorganic lead halide perovskites in a broad range of applications. This report describes a coating stratergy of perovskite nanocrystals via poly- methylmethacrylate-introdnced ligand-assisted reprecipita- tion, using the interactions between the Pb cations on the surface of perovskite nanocrystals and the functional ester carbonyl groups in polymethylmethacrylate framework. The hydrophobic framework shields the open metal sites of hybrid organic-inorganic lead halide perovskites from being attacked by water, effectively retarding the diffusion of water into the perovskite nanocrystals. The as-prepared films demonstrate high resistance to heat and moisture. Additionally, the in- troduction of polymethylmethacrylate into ligand-assisted reprecipitation can effectively control the bulk precipitation and promote the stability of the perovskite solution.展开更多
文摘Hybrid organic-inorganic perovskites have been the subject of recent intense interest due to advances in photovoltaic and other optoelectronic applications. However, their poor stability limits commercial market application We enhance water stability by post treatment preparation of hybrid metal halide perovskite nanocrystal-embedded polymethylmethacrylate (PM- MA) blend films. Through blending process without any cleaning of nanocrystals, crystalline hybrid organic-inorganic perovs-kite nanocrystals were incorporated into PMMA matrix with well-dispersion Passivation of PMMA on the surface of the per-ovskite nanocrystals results in decreased traps and a long photoluminescence (PL) lifetime despite the bromine vacancies in the crystal lattice. Moreover, such color purity and inherent high transmittance for fluorescence emission of perovskite nanocrystals will endow the films with promising potentials in diverse practice photonic applications.
基金supported by the Thousand Young Talents Programthe National Natural Science Foundation of China (21422507,21635002 and 21321003)
文摘To enhance the stability in humidity is very crucial to hybrid organic-inorganic lead halide perovskites in a broad range of applications. This report describes a coating stratergy of perovskite nanocrystals via poly- methylmethacrylate-introdnced ligand-assisted reprecipita- tion, using the interactions between the Pb cations on the surface of perovskite nanocrystals and the functional ester carbonyl groups in polymethylmethacrylate framework. The hydrophobic framework shields the open metal sites of hybrid organic-inorganic lead halide perovskites from being attacked by water, effectively retarding the diffusion of water into the perovskite nanocrystals. The as-prepared films demonstrate high resistance to heat and moisture. Additionally, the in- troduction of polymethylmethacrylate into ligand-assisted reprecipitation can effectively control the bulk precipitation and promote the stability of the perovskite solution.