目的基于视觉的前车防碰撞预警技术是汽车主动安全领域的一个重要研究方向,其中对前车进行快速准确检测并建立稳定可靠的安全距离模型是该技术亟待解决的两个难点。为此,本文提出车路视觉协同的高速公路防碰撞预警算法。方法将通过图像...目的基于视觉的前车防碰撞预警技术是汽车主动安全领域的一个重要研究方向,其中对前车进行快速准确检测并建立稳定可靠的安全距离模型是该技术亟待解决的两个难点。为此,本文提出车路视觉协同的高速公路防碰撞预警算法。方法将通过图像处理技术检测出来的视频图像中的车道线和自车的行驶速度作为输入,运用安全区实时计算算法构建安全距离模型,在当前车辆前方形成一块预警安全区域。采用深度神经网络YOLOv3(you only look once v3)对前车进行实时检测,得到车辆的位置信息。根据图像中前车的位置和构建的安全距离模型,对可能发生的追尾碰撞事故进行预测。结果实验结果表明,重新训练的YOLOv3算法车辆检测准确率为98.04%,提出算法与马自达CX-4的FOW(forward obstruction warning)前方碰撞预警系统相比,能够侧向和前向预警,并提前0.8 s发出警报。结论本文方法与传统的车载超声波、雷达或激光测距的防碰撞预警方法相比,具有较强的适用性和稳定性,预警准确率高,可以帮助提高司机在高速公路上的行车安全性。展开更多
随着城市化交通的发展,感知计算在智慧城市起着重要的作用。针对传统密度聚类算法无法适配海量出租车GPS轨迹数据及可视化的问题,提出了BCS-DBSCAN(Big-Data Cluster Center Statistics Density-Based Spatial Clustering of Applicatio...随着城市化交通的发展,感知计算在智慧城市起着重要的作用。针对传统密度聚类算法无法适配海量出租车GPS轨迹数据及可视化的问题,提出了BCS-DBSCAN(Big-Data Cluster Center Statistics Density-Based Spatial Clustering of Applications with Noise)聚类算法。该算法可以对轨迹数据切分及并行化聚类且能够提取最大密度簇心,并将结果适配可视化模型。实验结果表明,与其它流行的方法相比,在海量数据下提取城市载客热点区域的聚类速度、精确化及可视化方面具有十分显著的优势,对进一步提升城市规划、提高交通效率提供了重要的决策信息。展开更多
本文针对危险驾驶识别中主流行为检测算法可靠性差的问题,提出了一种快速、可靠的视觉协同分析方法。对手机、水杯、香烟等敏感物体进行目标检测,提出的LW(low weight)-Yolov4(You only look once v4)通过去除CSPDarknet53(cross stage ...本文针对危险驾驶识别中主流行为检测算法可靠性差的问题,提出了一种快速、可靠的视觉协同分析方法。对手机、水杯、香烟等敏感物体进行目标检测,提出的LW(low weight)-Yolov4(You only look once v4)通过去除CSPDarknet53(cross stage partial Darknet53)卷积层中不重要的要素通道提升了检测速度,并L1正则化产生稀疏权值矩阵,添加到BN(batch normalization)层的梯度中,实现优化网络模型的目的;提出姿态检测算法对驾驶员指关节关键点进行检测,经过仿射逆变换得到原始帧中的坐标;通过视觉协同分析对比敏感物品的检测框位置与驾驶员手部坐标是否重合,判定驾驶员是否出现违规驾驶行为及类别。实验结果表明,该方法在识别精度与检测速度方面均优于主流的算法,能够满足实时性和可靠性的检测要求。展开更多
文摘目的基于视觉的前车防碰撞预警技术是汽车主动安全领域的一个重要研究方向,其中对前车进行快速准确检测并建立稳定可靠的安全距离模型是该技术亟待解决的两个难点。为此,本文提出车路视觉协同的高速公路防碰撞预警算法。方法将通过图像处理技术检测出来的视频图像中的车道线和自车的行驶速度作为输入,运用安全区实时计算算法构建安全距离模型,在当前车辆前方形成一块预警安全区域。采用深度神经网络YOLOv3(you only look once v3)对前车进行实时检测,得到车辆的位置信息。根据图像中前车的位置和构建的安全距离模型,对可能发生的追尾碰撞事故进行预测。结果实验结果表明,重新训练的YOLOv3算法车辆检测准确率为98.04%,提出算法与马自达CX-4的FOW(forward obstruction warning)前方碰撞预警系统相比,能够侧向和前向预警,并提前0.8 s发出警报。结论本文方法与传统的车载超声波、雷达或激光测距的防碰撞预警方法相比,具有较强的适用性和稳定性,预警准确率高,可以帮助提高司机在高速公路上的行车安全性。
文摘随着城市化交通的发展,感知计算在智慧城市起着重要的作用。针对传统密度聚类算法无法适配海量出租车GPS轨迹数据及可视化的问题,提出了BCS-DBSCAN(Big-Data Cluster Center Statistics Density-Based Spatial Clustering of Applications with Noise)聚类算法。该算法可以对轨迹数据切分及并行化聚类且能够提取最大密度簇心,并将结果适配可视化模型。实验结果表明,与其它流行的方法相比,在海量数据下提取城市载客热点区域的聚类速度、精确化及可视化方面具有十分显著的优势,对进一步提升城市规划、提高交通效率提供了重要的决策信息。
文摘本文针对危险驾驶识别中主流行为检测算法可靠性差的问题,提出了一种快速、可靠的视觉协同分析方法。对手机、水杯、香烟等敏感物体进行目标检测,提出的LW(low weight)-Yolov4(You only look once v4)通过去除CSPDarknet53(cross stage partial Darknet53)卷积层中不重要的要素通道提升了检测速度,并L1正则化产生稀疏权值矩阵,添加到BN(batch normalization)层的梯度中,实现优化网络模型的目的;提出姿态检测算法对驾驶员指关节关键点进行检测,经过仿射逆变换得到原始帧中的坐标;通过视觉协同分析对比敏感物品的检测框位置与驾驶员手部坐标是否重合,判定驾驶员是否出现违规驾驶行为及类别。实验结果表明,该方法在识别精度与检测速度方面均优于主流的算法,能够满足实时性和可靠性的检测要求。
文摘目的随着城市交通拥堵问题的日益严重,建立有效的道路拥堵可视化系统,对智慧城市建设起着重要作用。针对目前基于车辆密度分析法、车速判定法、行驶时间判定法等模式单一,可信度低的问题,提出了一种基于DBSCAN+(density-based spatial clustering of applications with noise plus)的道路拥堵识别可视化方法。方法引入分块并行计算,相较于传统密度算法,可以适应大规模轨迹数据,并行降维聚类速度快。对结果中缓行区类簇判别路段起始点和终止点,通过曲线拟合和拓扑网络纠偏算法,将类簇中轨迹样本点所表征的路段通过地图匹配算法匹配在电子地图中,并结合各类簇中浮动车平均行驶速度判别道路拥堵程度,以颜色深浅程度进行区分可视化。结果实验结果表明,DBSCAN+算法相较现有改进的DBSCAN算法时间复杂度具有优势,由指数降为线性,可适应海量轨迹点。相较主流地图产品,利用城市出租车车载OBD(on board diagnostics)数据进行城区道路拥堵识别,提取非畅通路段总检出长度相较最优产品提高28.9%,拥堵识别命中率高达91%,较主流产品城区拥堵识别平均命中率提高15%。结论在城市路网中,基于DBSCAN+密度聚类和缓行区平均移动速度的多表征道路拥堵识别算法与主流地图产品相比,对拥堵识别率、通勤程度划分更具代表性,可信度更高,可以为道路拥堵识别的实时性提供保障。