Objective: Myocardial infarction (MI) is the main cause of heart failure, but the relationship between the extent of MI and cardiac function has not been clearly determined. The present study was undertaken to investi...Objective: Myocardial infarction (MI) is the main cause of heart failure, but the relationship between the extent of MI and cardiac function has not been clearly determined. The present study was undertaken to investigate early changes in the electrocardiogram associated with infarct size and cardiac function after MI. Methods: MI was induced by ligating the left anterior descending coronary artery in rats. Electrocardiograms, echocardiographs and hemodynamic parameters were assessed and myocardial infarct size was measured from mid-transverse sections stained with Masson抯 trichrome. Results: The sum of pathological Q wave amplitudes was strongly correlated with myocardial infarct size (r = 0.920, P < 0.0001), left ventricular ejection fraction (r = -0.868, P < 0.0001) and left ventricular end diastolic pressure (r = 0.835, P < 0.0004). Furthermore, there was close relationship between MI size and cardiac function as assessed by left ventricular ejection fraction (r = -0.913, P < 0.0001) and left ventricular end diastolic pressure (r = 0.893, P < 0.0001). Conclusion: The sum of pathological Q wave amplitudes after MI can be used to estimate the extent of MI as well as cardiac function.展开更多
文摘Objective: Myocardial infarction (MI) is the main cause of heart failure, but the relationship between the extent of MI and cardiac function has not been clearly determined. The present study was undertaken to investigate early changes in the electrocardiogram associated with infarct size and cardiac function after MI. Methods: MI was induced by ligating the left anterior descending coronary artery in rats. Electrocardiograms, echocardiographs and hemodynamic parameters were assessed and myocardial infarct size was measured from mid-transverse sections stained with Masson抯 trichrome. Results: The sum of pathological Q wave amplitudes was strongly correlated with myocardial infarct size (r = 0.920, P < 0.0001), left ventricular ejection fraction (r = -0.868, P < 0.0001) and left ventricular end diastolic pressure (r = 0.835, P < 0.0004). Furthermore, there was close relationship between MI size and cardiac function as assessed by left ventricular ejection fraction (r = -0.913, P < 0.0001) and left ventricular end diastolic pressure (r = 0.893, P < 0.0001). Conclusion: The sum of pathological Q wave amplitudes after MI can be used to estimate the extent of MI as well as cardiac function.