期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于EfficientDet与Vision Transformer的接触网吊弦故障检测
被引量:
2
1
作者
卞建鹏
薛秀茹
+2 位作者
崔跃华
徐皓
鲁
一
铭
《铁道科学与工程学报》
EI
CAS
CSCD
北大核心
2023年第6期2340-2349,共10页
针对传统检测方法在铁路接触网吊弦故障状态检测中存在识别率低,识别速度慢的问题,提出一种基于轻量型网络EfficientDet与Vision Transformer网络相结合的接触网吊弦状态检测算法。该算法包括目标定位和分类检测2个部分,利用改进Efficie...
针对传统检测方法在铁路接触网吊弦故障状态检测中存在识别率低,识别速度慢的问题,提出一种基于轻量型网络EfficientDet与Vision Transformer网络相结合的接触网吊弦状态检测算法。该算法包括目标定位和分类检测2个部分,利用改进EfficientDet进行吊弦定位,将定位出的吊弦送入改进Vision Transformer网络进行故障类别检测。首先,使用空洞卷积替代EfficientDet网络中第2层和第3层的普通卷积,以扩大感受野,并用CBAM代替原网络中的SE注意力机制,汇聚吊弦的高层语义信息,使得改进后的EfficientDet能有效定位出接触网中尺寸占比较小的吊弦;其次,为减少参数量并保留较大范围的特征相关性,应用4个3×3的小卷积替代Vision Transformer中Embedding的16×16的卷积层,以深度提取浅层与深层特征之间的联系,同时对比当Num-head取值不同时,分析注意力机制对空间信息的影响,以确定吊弦故障分类检测的最优模型;最后分别与定位网络YOLOv3,Faster R-CNN和分类网络AlexNet,VGG16进行对比分析,吊弦定位模型的准确率为95.2%,实时速率为31帧/s,故障检测模型的准确率达到98.6%,实时速率为28帧/s。实验表明所提出的算法能够快速准确地检测出小目标吊弦的故障状态,有效地提高了铁路接触网智能巡检的效率。
展开更多
关键词
接触网吊弦故障检测
EfficientDet
Vision
Transformer
智能巡检
下载PDF
职称材料
题名
基于EfficientDet与Vision Transformer的接触网吊弦故障检测
被引量:
2
1
作者
卞建鹏
薛秀茹
崔跃华
徐皓
鲁
一
铭
机构
石家庄铁道大学电气与电子工程学院
出处
《铁道科学与工程学报》
EI
CAS
CSCD
北大核心
2023年第6期2340-2349,共10页
基金
国家自然科学基金资助项目(51307112)
国网河北省电力有限公司课题资助项目(kj2021-024)。
文摘
针对传统检测方法在铁路接触网吊弦故障状态检测中存在识别率低,识别速度慢的问题,提出一种基于轻量型网络EfficientDet与Vision Transformer网络相结合的接触网吊弦状态检测算法。该算法包括目标定位和分类检测2个部分,利用改进EfficientDet进行吊弦定位,将定位出的吊弦送入改进Vision Transformer网络进行故障类别检测。首先,使用空洞卷积替代EfficientDet网络中第2层和第3层的普通卷积,以扩大感受野,并用CBAM代替原网络中的SE注意力机制,汇聚吊弦的高层语义信息,使得改进后的EfficientDet能有效定位出接触网中尺寸占比较小的吊弦;其次,为减少参数量并保留较大范围的特征相关性,应用4个3×3的小卷积替代Vision Transformer中Embedding的16×16的卷积层,以深度提取浅层与深层特征之间的联系,同时对比当Num-head取值不同时,分析注意力机制对空间信息的影响,以确定吊弦故障分类检测的最优模型;最后分别与定位网络YOLOv3,Faster R-CNN和分类网络AlexNet,VGG16进行对比分析,吊弦定位模型的准确率为95.2%,实时速率为31帧/s,故障检测模型的准确率达到98.6%,实时速率为28帧/s。实验表明所提出的算法能够快速准确地检测出小目标吊弦的故障状态,有效地提高了铁路接触网智能巡检的效率。
关键词
接触网吊弦故障检测
EfficientDet
Vision
Transformer
智能巡检
Keywords
fault detection of catenary hanger
EfficientDet
Vision Transformer
intelligent inspection
分类号
U225.4 [交通运输工程—道路与铁道工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于EfficientDet与Vision Transformer的接触网吊弦故障检测
卞建鹏
薛秀茹
崔跃华
徐皓
鲁
一
铭
《铁道科学与工程学报》
EI
CAS
CSCD
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部