期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向动态主题数的话题演化分析 被引量:6
1
作者 方莹 黄河燕 +2 位作者 辛欣 庄琨 《中文信息学报》 CSCD 北大核心 2014年第3期142-149,共8页
话题演化用于自动分析话题变化趋势,具有较高的应用和研究价值。ILDA(Infinite Latent Dirichlet Allocation)模型在LDA(Latent Dirichlet Allocation)模型的基础上增加了狄利克雷过程,除了能获取隐变量,更重要的是能完成超参的动态更... 话题演化用于自动分析话题变化趋势,具有较高的应用和研究价值。ILDA(Infinite Latent Dirichlet Allocation)模型在LDA(Latent Dirichlet Allocation)模型的基础上增加了狄利克雷过程,除了能获取隐变量,更重要的是能完成超参的动态更新和主题数的变动。而已有的话题演化研究中,话题的主题数需要事先指定且无法变动,基于ILDA模型的方法则可以针对性地解决该问题。构建的话题演化分析系统可实现如下功能:各周期内按不同主题分类、相邻周期间的主题进行关联、按时间顺序计算子话题强度。实验显示,基于ILDA模型的参数动态更新符合实际需求,话题演化分析过程完善可行。 展开更多
关键词 主题模型 无参混合模型 狄利克雷过程 话题演化
下载PDF
When Factorization Meets Heterogeneous Latent Topics: An Interpretable Cross-Site Recommendation Framework 被引量:2
2
作者 辛欣 林钦佑 +1 位作者 黄河燕 《Journal of Computer Science & Technology》 SCIE EI CSCD 2015年第4期917-932,共16页
Data sparsity is a well-known challenge in recommender systems. Previous studies alleviate this problem by incorporating the information within the corresponding social media site. In this paper, we solve this challen... Data sparsity is a well-known challenge in recommender systems. Previous studies alleviate this problem by incorporating the information within the corresponding social media site. In this paper, we solve this challenge by exploring cross-site information. Specifically, we examine: 1) how to effectively and efficiently utilize cross-site ratings and content features to improve recommendation performance and 2) how to make the recommendation interpretable by utilizing content features. We propose a joint model of matrix factorization and latent topic analysis. Heterogeneous content features are modeled by multiple kinds of latent topics. In addition, the combination of matrix factorization and latent topics makes the recommendation result interpretable. Therefore, the above two issues are simultaneously solved. Through a real-world data.set, where user behaviors in three social media sites are collected, we demonstrate that the proposed model is effective in improving recommendation performance and interpreting the rationale of ratings. 展开更多
关键词 collaborative filtering recommender system topic analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部