为了提升传统行人徘徊检测方法的准确性,提出了一种结合行人检测与峰值密度聚类的行人多次徘徊检测算法(Multiple Wander Detection Combining Pedestrian Detection and Peak Density ClusteringMWD_PD_DPC)。首先,在行人检测算法的特...为了提升传统行人徘徊检测方法的准确性,提出了一种结合行人检测与峰值密度聚类的行人多次徘徊检测算法(Multiple Wander Detection Combining Pedestrian Detection and Peak Density ClusteringMWD_PD_DPC)。首先,在行人检测算法的特征提取网络与FPN层之间加入自适应卷积注意力机制(SKNet),提升模型在多尺度场景下行人检测精度。然后,提出了柔性非极大值抑制(DIOU-Soft-NMS)来缓解行人在密集场景下错误抑制的现象,提升行人检测算法在密集场景下的检测精度。最后,使用峰值密度聚类算法(DPC)对行人的轨迹进行分析,来判断是否发生徘徊行为。并通过AdaFace人脸识别算法对徘徊的行人进行人脸匹配,来判断行人是否在不同时间段多次发生徘徊行为。实验表明,该方法单次徘徊检测的准确率到达了94.6%。行人多次徘徊检测的准确率到达了78.7%。展开更多
作战过程的路径规划问题属于仿真过程中的一个重要决策环节,针对作战路径规划问题,文章提出了一种考虑作战特性的分段混合的路径优化算法。首先,提出了一种融合个体自适应精度约束的野马优化算法和A^(*)算法的分段混合(Improved Wild Ho...作战过程的路径规划问题属于仿真过程中的一个重要决策环节,针对作战路径规划问题,文章提出了一种考虑作战特性的分段混合的路径优化算法。首先,提出了一种融合个体自适应精度约束的野马优化算法和A^(*)算法的分段混合(Improved Wild Horse Optimization Algorithm and A^(*)Algorithm Based On Fusion,IAWHO_A^(*))路径优化算法模型,该模型由路径阶段划分模型、自适应个体精度约束的野马优化算法和A算法构成。其次,提出了一种考虑火力覆盖范围特性的路径阶段划分模型,将路径划分快速突进段和隐蔽突进段两个阶段;最后,提出了一种改进的个体自适应精度约束的野马优化算法(IAWHO)优化快速突进段的路径,IAWHO引入个体自适应精度约束以提高算法的全局最优解。文章算法在已有的城市路径规划上进行了仿真实验研究,并取得了良好的实验效果,本文的研究内容为作战路径规划奠定了重要的理论研究基础。展开更多
文摘为了提升传统行人徘徊检测方法的准确性,提出了一种结合行人检测与峰值密度聚类的行人多次徘徊检测算法(Multiple Wander Detection Combining Pedestrian Detection and Peak Density ClusteringMWD_PD_DPC)。首先,在行人检测算法的特征提取网络与FPN层之间加入自适应卷积注意力机制(SKNet),提升模型在多尺度场景下行人检测精度。然后,提出了柔性非极大值抑制(DIOU-Soft-NMS)来缓解行人在密集场景下错误抑制的现象,提升行人检测算法在密集场景下的检测精度。最后,使用峰值密度聚类算法(DPC)对行人的轨迹进行分析,来判断是否发生徘徊行为。并通过AdaFace人脸识别算法对徘徊的行人进行人脸匹配,来判断行人是否在不同时间段多次发生徘徊行为。实验表明,该方法单次徘徊检测的准确率到达了94.6%。行人多次徘徊检测的准确率到达了78.7%。
文摘作战过程的路径规划问题属于仿真过程中的一个重要决策环节,针对作战路径规划问题,文章提出了一种考虑作战特性的分段混合的路径优化算法。首先,提出了一种融合个体自适应精度约束的野马优化算法和A^(*)算法的分段混合(Improved Wild Horse Optimization Algorithm and A^(*)Algorithm Based On Fusion,IAWHO_A^(*))路径优化算法模型,该模型由路径阶段划分模型、自适应个体精度约束的野马优化算法和A算法构成。其次,提出了一种考虑火力覆盖范围特性的路径阶段划分模型,将路径划分快速突进段和隐蔽突进段两个阶段;最后,提出了一种改进的个体自适应精度约束的野马优化算法(IAWHO)优化快速突进段的路径,IAWHO引入个体自适应精度约束以提高算法的全局最优解。文章算法在已有的城市路径规划上进行了仿真实验研究,并取得了良好的实验效果,本文的研究内容为作战路径规划奠定了重要的理论研究基础。