为了解决多目标跟踪(MOT)算法中由于模糊行人特征造成的身份切换(IDS)等跟踪问题,并验证行人外观在跟踪过程中的重要性,提出了一种基于中心点检测模型的注意力自相关网络(ASCN)。首先,对原图进行通道和空间注意力网络的学习以获得两种...为了解决多目标跟踪(MOT)算法中由于模糊行人特征造成的身份切换(IDS)等跟踪问题,并验证行人外观在跟踪过程中的重要性,提出了一种基于中心点检测模型的注意力自相关网络(ASCN)。首先,对原图进行通道和空间注意力网络的学习以获得两种不同的特征图,并对深度信息完成解耦;然后,通过特征图之间的自相关性学习,获得更加准确的行人外观特征和行人方位信息,并将这些信息用于关联过程的跟踪;此外,制作了低帧率条件下视频的跟踪数据集,以验证改进算法的性能。在视频帧率条件不理想时,改进算法利用ASCN获取了行人外观信息,相较于仅利用方位信息的跟踪算法具有更好的准确率和鲁棒性。最后,将改进算法在MOT Challenge的MOT17数据集上进行测试。实验结果表明,与不加入ASCN的FairMOT(Fairness in MOT)相比,改进算法的跟踪平均准确率(MOTA)和识别F值(IDF1)指标分别提高了0.5和1.1个百分点,IDS数减少了32.2%,且在单卡NVIDIA Tesla V100上的运行速度达到了每秒21.2帧,这验证了改进算法不仅减少了跟踪过程中的错误,也提升了整体跟踪效果,且能够满足实时性要求。展开更多
文摘为了解决多目标跟踪(MOT)算法中由于模糊行人特征造成的身份切换(IDS)等跟踪问题,并验证行人外观在跟踪过程中的重要性,提出了一种基于中心点检测模型的注意力自相关网络(ASCN)。首先,对原图进行通道和空间注意力网络的学习以获得两种不同的特征图,并对深度信息完成解耦;然后,通过特征图之间的自相关性学习,获得更加准确的行人外观特征和行人方位信息,并将这些信息用于关联过程的跟踪;此外,制作了低帧率条件下视频的跟踪数据集,以验证改进算法的性能。在视频帧率条件不理想时,改进算法利用ASCN获取了行人外观信息,相较于仅利用方位信息的跟踪算法具有更好的准确率和鲁棒性。最后,将改进算法在MOT Challenge的MOT17数据集上进行测试。实验结果表明,与不加入ASCN的FairMOT(Fairness in MOT)相比,改进算法的跟踪平均准确率(MOTA)和识别F值(IDF1)指标分别提高了0.5和1.1个百分点,IDS数减少了32.2%,且在单卡NVIDIA Tesla V100上的运行速度达到了每秒21.2帧,这验证了改进算法不仅减少了跟踪过程中的错误,也提升了整体跟踪效果,且能够满足实时性要求。