期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Machine-learning-aided precise prediction of deletions with next-generation sequencing
1
作者 管瑞 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3239-3247,共9页
When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is l... When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is low.To address the problem,an integrated strategy is proposed.It organically combines the fundamental theories of the three mainstream methods(read-pair approaches,split-read technologies and read-depth analysis) with modern machine learning algorithms,using the recipe of feature extraction as a bridge.Compared with the state-of-art split-read methods for deletion detection in both low and high sequence coverage,the machine-learning-aided strategy shows great ability in intelligently balancing sensitivity and false discovery rate and getting a both more sensitive and more precise call set at single-base-pair resolution.Thus,users do not need to rely on former experience to make an unnecessary trade-off beforehand and adjust parameters over and over again any more.It should be noted that modern machine learning models can play an important role in the field of structural variation prediction. 展开更多
关键词 next-generation sequencing deletion prediction sensitivity false discovery rate feature extraction machine learning
下载PDF
基于AdaBoost的基因组缺失变异综合检测策略
2
作者 管瑞 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第5期924-928,共5页
针对基因组缺失变异检测中测序序列分裂比对方法所存在的假发现率较高的问题,提出了一种基于检测理论和AdaBoost的综合检测策略.首先,对配对末端测序序列进行初次映射和二次分裂比对,得到1 bp解析度的候选缺失变异集合,并使得该集合中... 针对基因组缺失变异检测中测序序列分裂比对方法所存在的假发现率较高的问题,提出了一种基于检测理论和AdaBoost的综合检测策略.首先,对配对末端测序序列进行初次映射和二次分裂比对,得到1 bp解析度的候选缺失变异集合,并使得该集合中包含尽可能多的候选变异;然后,依据配对末端测序序列映射分析、测序序列分裂比对和测序序列映射深度分析3类检测方法的基本原理,在2次比对结果中提取与缺失变异相关的序列特征;最后,以具有高泛化性能的AdaBoost神经网络集成模型为判别模型,筛除候选集中的伪阳性结果,从而得到最终结果集.实验结果表明,相对于传统的测序序列分裂比对方法,所提策略能够在几乎不损失检测敏感度的前提下更加有效地降低假发现率. 展开更多
关键词 缺失变异 二代测序 特征提取 ADABOOST
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部