The construction of van der Waals(vdW)heterostructures by stacking different two-dimensional layered materials have been recognised as an effective strategy to obtain the desired properties.The 3N-doped graphdiyne(N-G...The construction of van der Waals(vdW)heterostructures by stacking different two-dimensional layered materials have been recognised as an effective strategy to obtain the desired properties.The 3N-doped graphdiyne(N-GY)has been successfully synthesized in the laboratory.It could be assembled into a supercapacitor and can be used for tensile energy storage.However,the flat band and wide forbidden bands could hinder its application of N-GY layer in optoelectronic and nanoelectronic devices.In order to extend the application of N-GY layer in electronic devices,MoS_(2) was selected to construct an N-GY/MoS_(2) heterostructure due to its good electronic and optical properties.The N-GY/MoS_(2) heterostructure has an optical absorption range from the visible to ultraviolet with a absorption coefficient of 10^(5) cm^(-1).The N-GY/MoS_(2) heterostructure exhibits a type-II band alignment allows the electron–hole to be located on N-GY and MoS_(2) respectively,which can further reduce the electron–hole complexation to increase exciton lifetime.The power conversion efficiency of N-GY/MoS_(2) heterostructure is up to 17.77%,indicating it is a promising candidate material for solar cells.In addition,the external electric field and biaxial strain could effectively tune the electronic structure.Our results provide a theoretical support for the design and application of N-GY/MoS_(2) vdW heterostructures in semiconductor sensors and photovoltaic devices.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62074053 and 61674053)the Natural Science Foundation of Henan Province,China(Grant No.202300410237)+1 种基金the Program for Science&Technology Innovation Talents in Universities of Henan Province,China(Grant No.18HASTIT030)the Fund from Henan Overseas Expertise Introduction Center for Discipline Innovation(Grant No.CXJD2019005).
文摘The construction of van der Waals(vdW)heterostructures by stacking different two-dimensional layered materials have been recognised as an effective strategy to obtain the desired properties.The 3N-doped graphdiyne(N-GY)has been successfully synthesized in the laboratory.It could be assembled into a supercapacitor and can be used for tensile energy storage.However,the flat band and wide forbidden bands could hinder its application of N-GY layer in optoelectronic and nanoelectronic devices.In order to extend the application of N-GY layer in electronic devices,MoS_(2) was selected to construct an N-GY/MoS_(2) heterostructure due to its good electronic and optical properties.The N-GY/MoS_(2) heterostructure has an optical absorption range from the visible to ultraviolet with a absorption coefficient of 10^(5) cm^(-1).The N-GY/MoS_(2) heterostructure exhibits a type-II band alignment allows the electron–hole to be located on N-GY and MoS_(2) respectively,which can further reduce the electron–hole complexation to increase exciton lifetime.The power conversion efficiency of N-GY/MoS_(2) heterostructure is up to 17.77%,indicating it is a promising candidate material for solar cells.In addition,the external electric field and biaxial strain could effectively tune the electronic structure.Our results provide a theoretical support for the design and application of N-GY/MoS_(2) vdW heterostructures in semiconductor sensors and photovoltaic devices.