Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the rece...Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the recent advances for organic micro/nanocrystals from the perspective of molecule aggregation mode,morphology modulation,and optical property modulation are reviewed.The stacking mode and the intermolecular interaction depend on the molecular structure,which eventually determines the morphology of organic micro/nanocrystals.The morphologies of the organic micro/nanocrystals make the aggregates exhibit photon confinement or light-guiding properties as organic miniaturized optoelectronic devices.In this review,we conclude with a summary and put forward our perspective on the current challenges and the future development of morphology and optical tunable direction for the organic micro/nanocrystals.展开更多
One dimensional(1D)organic axial micro/nanocrystals serving as the building block towards integrated nanostructures have been demonstrated in various nanosystems[1-3].As an emerging solidstate platform,these micro/nan...One dimensional(1D)organic axial micro/nanocrystals serving as the building block towards integrated nanostructures have been demonstrated in various nanosystems[1-3].As an emerging solidstate platform,these micro/nanostructures are increasingly being regarded as potential candidates for constructing optoelectronic circuits.Despite remarkable achievements,pioneering works simultaneously revealed the shortage of non-guidance for molecular nucleation in these 1D axial micro/nanostructures[4-6],posing a great challenge for the practical applications.From this perspective,there is urgent to develop special 1D axial micro/nanostructures to promote the generation of highly ordered integrated structures.展开更多
Synchrotron radiation(SR) X-ray has significant potential for medical applications. However, the mechanisms underlying the effects of SR X-ray on biological tissues remain unclear. Because increasing evidence has indi...Synchrotron radiation(SR) X-ray has significant potential for medical applications. However, the mechanisms underlying the effects of SR X-ray on biological tissues remain unclear. Because increasing evidence has indicated critical roles of cluster of differentiation 38(CD38) in various cellular functions and cell survival, in this study we used rodent testes as a model to determine the effects of SR X-ray irradiation on the CD38 level of the testes. We found that SR X-ray irradiation led to a significant increase in the CD38 level of rodent testes one day after the irradiation. In contrast, the SR X-ray irradiation did not produce a significant increase in the CD38 level of the testes from the rats that were administered with the antioxidant N-acetyl cysteine, thus suggesting that oxidative stress plays a significant role in the SR X-ray irradiation-induced increase in the CD38 levels. Our study has also provided evidence suggesting that poly(ADP-ribose) polymerase(PARP) activity is not involved in the SR X-ray irradiation-produced effect on the CD38 levels. Collectively, this study has provided first in vivo evidence indicating that CD38 levels can be increased by ionizing radiation, in which oxidative stress plays an important role. Because oxidative stress occurs in ionizing radiation as well as such diseases as cerebral ischemia and Parkinson's disease, oxidative stress may produce pathological effects by inducing increased CD38 levels.展开更多
基金supported by the National Natural Science Foundation of China(21971185)the Collaborative Innovation Center of Suzhou Nano Science and Technology(CIC-Nano)the"111"Project of The State Administration of Foreign Experts Affairs of China。
文摘Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the recent advances for organic micro/nanocrystals from the perspective of molecule aggregation mode,morphology modulation,and optical property modulation are reviewed.The stacking mode and the intermolecular interaction depend on the molecular structure,which eventually determines the morphology of organic micro/nanocrystals.The morphologies of the organic micro/nanocrystals make the aggregates exhibit photon confinement or light-guiding properties as organic miniaturized optoelectronic devices.In this review,we conclude with a summary and put forward our perspective on the current challenges and the future development of morphology and optical tunable direction for the organic micro/nanocrystals.
基金supported by the National Natural Science Foundation of China(21703148 and 21971185)the Natural Science Foundation of Shandong Province(ZR2020MB054)+1 种基金Jiangsu Key Laboratory for Carbon-Based Functional Materials&Devices,Soochow University(KJS2156)the Collaborative Innovation Center of Suzhou Nano Science and Technology(CIC-Nano).
文摘One dimensional(1D)organic axial micro/nanocrystals serving as the building block towards integrated nanostructures have been demonstrated in various nanosystems[1-3].As an emerging solidstate platform,these micro/nanostructures are increasingly being regarded as potential candidates for constructing optoelectronic circuits.Despite remarkable achievements,pioneering works simultaneously revealed the shortage of non-guidance for molecular nucleation in these 1D axial micro/nanostructures[4-6],posing a great challenge for the practical applications.From this perspective,there is urgent to develop special 1D axial micro/nanostructures to promote the generation of highly ordered integrated structures.
基金the National Basic Research Program (973) of China(No.2010CB834306)the National Natural Science Foundation of China(No.81171098)
文摘Synchrotron radiation(SR) X-ray has significant potential for medical applications. However, the mechanisms underlying the effects of SR X-ray on biological tissues remain unclear. Because increasing evidence has indicated critical roles of cluster of differentiation 38(CD38) in various cellular functions and cell survival, in this study we used rodent testes as a model to determine the effects of SR X-ray irradiation on the CD38 level of the testes. We found that SR X-ray irradiation led to a significant increase in the CD38 level of rodent testes one day after the irradiation. In contrast, the SR X-ray irradiation did not produce a significant increase in the CD38 level of the testes from the rats that were administered with the antioxidant N-acetyl cysteine, thus suggesting that oxidative stress plays a significant role in the SR X-ray irradiation-induced increase in the CD38 levels. Our study has also provided evidence suggesting that poly(ADP-ribose) polymerase(PARP) activity is not involved in the SR X-ray irradiation-produced effect on the CD38 levels. Collectively, this study has provided first in vivo evidence indicating that CD38 levels can be increased by ionizing radiation, in which oxidative stress plays an important role. Because oxidative stress occurs in ionizing radiation as well as such diseases as cerebral ischemia and Parkinson's disease, oxidative stress may produce pathological effects by inducing increased CD38 levels.