China reduced-activation ferritic/martensitic steel is irradiated at 773 K with 792 MeV Ar-ions to fluences of 2.3×10^20 and 4.6×10^20 ions/m2, respectively. The variation of the microstructures of the Reduc...China reduced-activation ferritic/martensitic steel is irradiated at 773 K with 792 MeV Ar-ions to fluences of 2.3×10^20 and 4.6×10^20 ions/m2, respectively. The variation of the microstructures of the Reduced-activation ferritic/martensitic (RAFM) steel samples with the Ar-ion penetration depth is investigated using a transmission electron microscope (TEM). Prom analyses of the microstrueture changes along with the Ar-ions penetrating depth, it is found that high-density cavities form in the peak damage region. The average size and the number density of the cavities depend strongly on the damage level and Ar-atom concentration. Swelling due to the formation of cavities increases significantly with an increased damage level, and the existence of deposited Ar-atoms also enhances the growth of the average size of the cavities. The effect of atom displacements and Ar-atoms on the swelling of the RAFM steel under high energy Ar-ion irradiation is discussed briefly.展开更多
Amorphous silicon (a-Si), nanocrystalline silicon (nc-Si) and hydrogenated nanocrys- talline silicon (nc-Si:H) films were fabricated by using chemical vapor deposition (CVD) system. The a-Si and nc-Si thin fi...Amorphous silicon (a-Si), nanocrystalline silicon (nc-Si) and hydrogenated nanocrys- talline silicon (nc-Si:H) films were fabricated by using chemical vapor deposition (CVD) system. The a-Si and nc-Si thin films were irradiated with 94 MeV Xe-ions at fluences of 1.0 × 10^11 ions/cm2, 1.0 × 10^12 ions/cm^2 and 1.0 × 10^13 ions/era2 at room temperature (RT). The nc-Si:H films were irradiated with 9 MeV Xe-ions at 1.0 ×10^12 Xe/cm^2, 1.0 × 10^13 Xe/cm2 and 1.0×10^14 Xe/cm2 at RT. For comparison, mono-crystalline silicon (c-Si) samples were also irradiated at RT with 94 MeV Xe-ions. All samples were analyzed by using an UV/VIS/NIR spectrometer and an X-ray powder diffractometer. Variations of the optical band-gap (Eg) and grain size (D) versus the irradiation fluence were investigated systematically. The obtained results showed that the optical band-gaps and grain size of the thin films changed dramatically whereas no observable change was found in c-Si samples after Xe-ion irradiation. Possible mechanism underlying the modification of silicon thin films was briefly discussed.展开更多
Different mass percent polyacrylonitrile (PAN)-polyethylene oxide (PEO) gels were prepared and irradiated by an electron beam (EB) with energy of 1.0 MeV to the dose ranging from 13 kGy to 260 kGy. The gels were...Different mass percent polyacrylonitrile (PAN)-polyethylene oxide (PEO) gels were prepared and irradiated by an electron beam (EB) with energy of 1.0 MeV to the dose ranging from 13 kGy to 260 kGy. The gels were analysed by using Fourier transform infrared spectrum, gel fraction and ionic conductivity (IC) measurement. The results show that the gel is crosslinked by EB irradiation, the crosslinking degree rises with the increasing EB irradiation dose (ID) and the mass percents of both PAN and PEO contribute a lot to the crosslinking; in addition, EB irradiation can promote the IC of PAN-PEO gels. There exists an optimum irradiation dose, at which the IC can increase dramatically. The IC changes of the PAN-PEO gels along with ID are divided into three regions: IC rapidly increasing region, IC decreasing region and IC balanced region. The cause of the change can be ascribed to two aspects, gel capturing electron degree and crosslinking degree. By comparing the IC-ID curves of different mass percents of PAN and PEO in gel, we found that PAN plays a more important role for gel IC promotion than PEO, since addition of PAN in gel causes the IC-ID curve sharper, while addition of PEO in gel causes the curve milder.展开更多
基金Supported by National Basic Research Program of China (973 Program, 2010CB832902)National Natural Science Foundation of China (10835010, 91026002)
文摘China reduced-activation ferritic/martensitic steel is irradiated at 773 K with 792 MeV Ar-ions to fluences of 2.3×10^20 and 4.6×10^20 ions/m2, respectively. The variation of the microstructures of the Reduced-activation ferritic/martensitic (RAFM) steel samples with the Ar-ion penetration depth is investigated using a transmission electron microscope (TEM). Prom analyses of the microstrueture changes along with the Ar-ions penetrating depth, it is found that high-density cavities form in the peak damage region. The average size and the number density of the cavities depend strongly on the damage level and Ar-atom concentration. Swelling due to the formation of cavities increases significantly with an increased damage level, and the existence of deposited Ar-atoms also enhances the growth of the average size of the cavities. The effect of atom displacements and Ar-atoms on the swelling of the RAFM steel under high energy Ar-ion irradiation is discussed briefly.
基金supported by the Major State Basic Research Development Program of China(973Program,No.2010CB832902)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KJCX2-YW-N35)
文摘Amorphous silicon (a-Si), nanocrystalline silicon (nc-Si) and hydrogenated nanocrys- talline silicon (nc-Si:H) films were fabricated by using chemical vapor deposition (CVD) system. The a-Si and nc-Si thin films were irradiated with 94 MeV Xe-ions at fluences of 1.0 × 10^11 ions/cm2, 1.0 × 10^12 ions/cm^2 and 1.0 × 10^13 ions/era2 at room temperature (RT). The nc-Si:H films were irradiated with 9 MeV Xe-ions at 1.0 ×10^12 Xe/cm^2, 1.0 × 10^13 Xe/cm2 and 1.0×10^14 Xe/cm2 at RT. For comparison, mono-crystalline silicon (c-Si) samples were also irradiated at RT with 94 MeV Xe-ions. All samples were analyzed by using an UV/VIS/NIR spectrometer and an X-ray powder diffractometer. Variations of the optical band-gap (Eg) and grain size (D) versus the irradiation fluence were investigated systematically. The obtained results showed that the optical band-gaps and grain size of the thin films changed dramatically whereas no observable change was found in c-Si samples after Xe-ion irradiation. Possible mechanism underlying the modification of silicon thin films was briefly discussed.
基金Project supported by the National Basic Research Program of China (Grant No.2010CB832902)the Key Program of the National Natural Science Foundation of China (Grant No.10835010)the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (Grant No.KJCX2-YW-N35)
文摘Different mass percent polyacrylonitrile (PAN)-polyethylene oxide (PEO) gels were prepared and irradiated by an electron beam (EB) with energy of 1.0 MeV to the dose ranging from 13 kGy to 260 kGy. The gels were analysed by using Fourier transform infrared spectrum, gel fraction and ionic conductivity (IC) measurement. The results show that the gel is crosslinked by EB irradiation, the crosslinking degree rises with the increasing EB irradiation dose (ID) and the mass percents of both PAN and PEO contribute a lot to the crosslinking; in addition, EB irradiation can promote the IC of PAN-PEO gels. There exists an optimum irradiation dose, at which the IC can increase dramatically. The IC changes of the PAN-PEO gels along with ID are divided into three regions: IC rapidly increasing region, IC decreasing region and IC balanced region. The cause of the change can be ascribed to two aspects, gel capturing electron degree and crosslinking degree. By comparing the IC-ID curves of different mass percents of PAN and PEO in gel, we found that PAN plays a more important role for gel IC promotion than PEO, since addition of PAN in gel causes the IC-ID curve sharper, while addition of PEO in gel causes the curve milder.