Employing recently developed magneto-optical trap recoil ion momentum spectroscopy(MOTRIMS)combined with cold atoms,strong laser pulse,and ultrafast technologies,we study momentum distributions of the multiply ionized...Employing recently developed magneto-optical trap recoil ion momentum spectroscopy(MOTRIMS)combined with cold atoms,strong laser pulse,and ultrafast technologies,we study momentum distributions of the multiply ionized cold rubidium(Rb)induced by the elliptically polarized laser pulses(35 fs,1.3×10^15 W/cm^2).The complete vector momenta of Rb^n+ions up to charge state n=4 are recorded with extremely high resolution(0.12 a.u.for Rb^+).Variations of characteristic multi-bands are displayed in momentum distributions because the ellipticity varies from the linear to circular polarization,are interpreted qualitatively with the classical overbarrier ionization model.Present momentum spectroscopy of cold heavy alkali atoms presents novel strong-field phenomena beyond the noble gases.展开更多
基金National Natural Science Foundation of China(Grant Nos.1182780611874368+2 种基金6167521311822401and11674034)。
文摘Employing recently developed magneto-optical trap recoil ion momentum spectroscopy(MOTRIMS)combined with cold atoms,strong laser pulse,and ultrafast technologies,we study momentum distributions of the multiply ionized cold rubidium(Rb)induced by the elliptically polarized laser pulses(35 fs,1.3×10^15 W/cm^2).The complete vector momenta of Rb^n+ions up to charge state n=4 are recorded with extremely high resolution(0.12 a.u.for Rb^+).Variations of characteristic multi-bands are displayed in momentum distributions because the ellipticity varies from the linear to circular polarization,are interpreted qualitatively with the classical overbarrier ionization model.Present momentum spectroscopy of cold heavy alkali atoms presents novel strong-field phenomena beyond the noble gases.