期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
云模型和集成极限学习机相结合的滚动轴承故障诊断方法 被引量:5
1
作者 赵荣珍 马森 吴耀春 《兰州理工大学学报》 CAS 北大核心 2021年第4期33-39,共7页
针对轴承振动信号的不确定性和非平稳性以及BP神经网络学习算法收敛速度慢、稳定性差等问题,提出了基于云模型和集成极限学习机的滚动轴承故障模式识别方法.将经预处理之后的信号进行云化,产生滚动轴承在不同状态下的信号云;提取出决定... 针对轴承振动信号的不确定性和非平稳性以及BP神经网络学习算法收敛速度慢、稳定性差等问题,提出了基于云模型和集成极限学习机的滚动轴承故障模式识别方法.将经预处理之后的信号进行云化,产生滚动轴承在不同状态下的信号云;提取出决定信号云分布的期望、熵和超熵三个参数作为表征轴承状态的特征量并依此构造出原始的轴承状态数据集;再将故障特征数据集经归一化处理后送入集成极限学习机进行识别.研究结果表明:云-集成极限学习机方法可以有效地实现轴承故障模式识别,与传统神经网络识别方法相比,该方法拥有更高的识别准确率和稳定性,并且集成极限学习机在抗噪性方面有较好的表现. 展开更多
关键词 滚动轴承 故障诊断 云理论 集成学习 神经网络
下载PDF
云模型和集成分类结合的故障数据不平衡学习
2
作者 马森 赵荣珍 吴耀春 《振动.测试与诊断》 EI CSCD 北大核心 2023年第6期1114-1120,1243,共8页
针对故障数据集不平衡而导致的误分类问题,在分析了不平衡数据对传统分类器影响的基础上,提出了一种基于高斯云模型正向、逆向云发生算法的样本再生成技术。首先,针对样本较少的类别,以现有样本特征值为逆向云算法的输入,计算出特征云... 针对故障数据集不平衡而导致的误分类问题,在分析了不平衡数据对传统分类器影响的基础上,提出了一种基于高斯云模型正向、逆向云发生算法的样本再生成技术。首先,针对样本较少的类别,以现有样本特征值为逆向云算法的输入,计算出特征云模型的期望E_(x)、熵E_(n)和超熵H_(e)这3个指标;其次,以E_(x),E_(n)和H_(e)为正向云发生算法的输入,衍生出数据量远大于原有样本的云滴(x_(i),y_(i)),采集若干云滴的x值作为新的样本特征值,补充了样本数量较少的类,在数据层面解决了不平衡问题;然后,借助集成极限学习机(ensemble extreme learning machine,简称E-ELM)对补充后的平衡数据集进行分类学习,在算法层面提高了最终的分类精度;最后,在一个滚动轴承故障数据集上验证了所提方法的有效性。 展开更多
关键词 滚动轴承 分类 不平衡学习 集成学习
下载PDF
强差异性神经网络集成的转子故障识别方法 被引量:2
3
作者 马森 赵荣珍 吴耀春 《振动.测试与诊断》 EI CSCD 北大核心 2021年第6期1112-1118,1236,共8页
针对误差反向传播(back propagation,简称BP)神经网络在作为传统Bagging集成学习机中的基分类器时,存在相互之间差异性偏低的问题,引入一种特征扰动法对集成学习机的分类性能进行改进。首先,将Relief-F特征评估算法和改进轮盘赌选择法... 针对误差反向传播(back propagation,简称BP)神经网络在作为传统Bagging集成学习机中的基分类器时,存在相互之间差异性偏低的问题,引入一种特征扰动法对集成学习机的分类性能进行改进。首先,将Relief-F特征评估算法和改进轮盘赌选择法进行结合,并设置基分类器的数目为30个,从转子故障特征集中选择出30个特征子集,每个特征子集的故障特征维数为30;其次,将训练集和测试集分别投影在对应的30个故障特征子集上,得到对应于30个基分类器的系列训练子集和测试子集,通过此方式实现了特征扰动环节;最后,利用Bagging集成学习机中自带的自助采样法对各训练子集进行处理,使其在最终输入至各基分类器时在特征空间和样本集合上都具有一定的差异性,间接使训练后的基分类器之间显示出更高的差异性,让最终的分类结果可信度更高。用一种低维双跨转子故障数据集对该集成学习方法进行类别辨识的结果表明,本方法能够显著提高BP网络的辨识准确率,并且具有良好的抗干扰性能。 展开更多
关键词 集成学习 神经网络 转子 故障诊断
下载PDF
基于云理论和Relief⁃F的滚动轴承故障识别方法
4
作者 马森 赵荣珍 +1 位作者 吴耀春 邓林峰 《振动.测试与诊断》 EI CSCD 北大核心 2021年第4期667-672,827,828,共8页
为了充分利用海量数据中蕴含的信息并对轴承故障进行有效识别,采用云理论方法将轴承的故障数据与其对应的故障类型进行映射,建立了滚动轴承在不同状态下各个特征的云分布模型,并依此构造出轴承故障的云判断知识库。同时,引入Relief⁃F算... 为了充分利用海量数据中蕴含的信息并对轴承故障进行有效识别,采用云理论方法将轴承的故障数据与其对应的故障类型进行映射,建立了滚动轴承在不同状态下各个特征的云分布模型,并依此构造出轴承故障的云判断知识库。同时,引入Relief⁃F算法确定训练集各特征的权重系数,结合云分布隶属度系数,提出了样本对于轴承故障的最终隶属度计算方法。通过根据不同数目的训练样本建立的云分类知识库在分类精度上的对比,证明了该方法具备对数据的学习能力。将该分类方法与常用的分类方法在含有噪声的测试样本上进行对比实验,证明了该分类方法在抗噪性方面的优越性。 展开更多
关键词 滚动轴承 故障识别 云理论 隶属度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部