对新能源汽车退役的动力电池进行梯次利用,可有效地提高储能电池的运行周期。根据退役后动力电池健康状态(state of health,SOH)的差异性,提出一种基于电池健康度的微电网群梯次利用储能系统容量配置方法。首先,考虑充放电深度对储能电...对新能源汽车退役的动力电池进行梯次利用,可有效地提高储能电池的运行周期。根据退役后动力电池健康状态(state of health,SOH)的差异性,提出一种基于电池健康度的微电网群梯次利用储能系统容量配置方法。首先,考虑充放电深度对储能电池寿命的影响,提出基于荷电状态(state of charge,SOC)的储能电池有效容量估算方法,为储能电池梯次利用相关研究提供理论依据。其次,为有效延长储能系统运行寿命,根据电池SOH设置储能系统的动态安全裕度,提高储能系统配置及调控的准确性。最后,根据梯次利用储能系统设定好的动态安全裕度,综合考虑微电网群的供需平衡、联络线损耗、储能的运行寿命及成本等,合理地制定系统选址定容方案。仿真结果表明广泛的动力电池梯次利用有效地降低了投资成本,通过SOH监测设定调控动态安全裕度,降低微电网群储能配置成本,延长了蓄电池使用寿命。展开更多
文摘对新能源汽车退役的动力电池进行梯次利用,可有效地提高储能电池的运行周期。根据退役后动力电池健康状态(state of health,SOH)的差异性,提出一种基于电池健康度的微电网群梯次利用储能系统容量配置方法。首先,考虑充放电深度对储能电池寿命的影响,提出基于荷电状态(state of charge,SOC)的储能电池有效容量估算方法,为储能电池梯次利用相关研究提供理论依据。其次,为有效延长储能系统运行寿命,根据电池SOH设置储能系统的动态安全裕度,提高储能系统配置及调控的准确性。最后,根据梯次利用储能系统设定好的动态安全裕度,综合考虑微电网群的供需平衡、联络线损耗、储能的运行寿命及成本等,合理地制定系统选址定容方案。仿真结果表明广泛的动力电池梯次利用有效地降低了投资成本,通过SOH监测设定调控动态安全裕度,降低微电网群储能配置成本,延长了蓄电池使用寿命。