P2-type layered oxides have been considered as promising cathode materials for Na-ion batteries,but the capac-ity decay resulting from the Na+/vacancy ordering and phase transformation limits their future large-scale ...P2-type layered oxides have been considered as promising cathode materials for Na-ion batteries,but the capac-ity decay resulting from the Na+/vacancy ordering and phase transformation limits their future large-scale applica-tions.Herein,the impact of Li-doping in different layers on the structure and electrochemical performance of P2-type Na_(0.7)Ni_(0.35)Mn_(0.65)O_(2) is investigated.It can be found that Li ions successfully enter both the Na and transition metal layers.The strategy of Li-doping can improve the cycling stability and rate capability of P2-type layered oxides,which promotes the development of high-performance Na-ion batteries.展开更多
Hard carbons as promising anode materials for Na-ion batteries(NIBs) have captured extensive attention because of their low operation voltage, easy synthesis process, and competitive specific capacity. However, there ...Hard carbons as promising anode materials for Na-ion batteries(NIBs) have captured extensive attention because of their low operation voltage, easy synthesis process, and competitive specific capacity. However, there are still several disadvantages, such as high cost and low initial coulombic efficiency, which limit their large-scale commercial applications.Herein, pine nut shells(PNSs), a low-cost biomass waste, are used as precursors to prepare hard carbon materials. Via a series of washing and heat treatment procedures, a pine nut shell hard carbon(PNSHC)-1400 sample has been obtained and delivers a reversible capacity of around 300 mAh/g, a high initial coulombic efficiency of 84%, and good cycling performance. These excellent Na storage properties indicate that PNSHC is one of the most promising candidates of hard carbon anodes for NIBs.展开更多
Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoerciviti...Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoercivities of the MnBi/Bi film are 1.5 T and 2.35 T at room temperature and at 373K, respectively, showing a positive temperature coefficient. Microstructural investigations show that the textured MnBi film results from the orientated growth induced by the textured Bi under-layer.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12105372 and 51991344)President's Foundation of China Institute of Atomic Energy(Grant No.16YZ202212000201)Chinese Academy of Sciences(Grant No.XDB33000000).
文摘P2-type layered oxides have been considered as promising cathode materials for Na-ion batteries,but the capac-ity decay resulting from the Na+/vacancy ordering and phase transformation limits their future large-scale applica-tions.Herein,the impact of Li-doping in different layers on the structure and electrochemical performance of P2-type Na_(0.7)Ni_(0.35)Mn_(0.65)O_(2) is investigated.It can be found that Li ions successfully enter both the Na and transition metal layers.The strategy of Li-doping can improve the cycling stability and rate capability of P2-type layered oxides,which promotes the development of high-performance Na-ion batteries.
基金Project supported by the President Fund Project of China Institute of Atomic Energy
文摘Hard carbons as promising anode materials for Na-ion batteries(NIBs) have captured extensive attention because of their low operation voltage, easy synthesis process, and competitive specific capacity. However, there are still several disadvantages, such as high cost and low initial coulombic efficiency, which limit their large-scale commercial applications.Herein, pine nut shells(PNSs), a low-cost biomass waste, are used as precursors to prepare hard carbon materials. Via a series of washing and heat treatment procedures, a pine nut shell hard carbon(PNSHC)-1400 sample has been obtained and delivers a reversible capacity of around 300 mAh/g, a high initial coulombic efficiency of 84%, and good cycling performance. These excellent Na storage properties indicate that PNSHC is one of the most promising candidates of hard carbon anodes for NIBs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51171001,51371009 and 50971003the Foundation of Key Laboratory of Neutron Physics of CAEP under Grant No 2014BB02
文摘Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoercivities of the MnBi/Bi film are 1.5 T and 2.35 T at room temperature and at 373K, respectively, showing a positive temperature coefficient. Microstructural investigations show that the textured MnBi film results from the orientated growth induced by the textured Bi under-layer.