We study the dynamics of quantum discord and entanglement for two spin qubits coupled to a spin chain with Dzyaloshinsky Moriya interaction. In the case of a two-qubit with an initial pure state, quantum correlations ...We study the dynamics of quantum discord and entanglement for two spin qubits coupled to a spin chain with Dzyaloshinsky Moriya interaction. In the case of a two-qubit with an initial pure state, quantum correlations decay to zero at the critical point of the environment in a very short time. In the case of a two-qubit with initial mixed state, it is found that quantum discord may get maximized due to the quantum critical behavior of the environment, while entanglement vanishes under the same condition. Besides, we observed a sudden transition between classical and quantum decoherence when only a single qubit interacts with the environment. The effects of Dzyaloshinsky-Moriya interaction on quantum correlations are considered in the two cases. The decay of quantum correlations is always strengthened by Dzyaloshinsky Moriya interaction.展开更多
We investigate the pairwise thermal quantum discord in a three-qubit XXZ model with Dzyaloshinskii-Moriya (DM) interaction. We find that the effects of DM interaction on antiferromagnetic system is distinct from that ...We investigate the pairwise thermal quantum discord in a three-qubit XXZ model with Dzyaloshinskii-Moriya (DM) interaction. We find that the effects of DM interaction on antiferromagnetic system is distinct from that of ferromagnetic system. The magnetic field supplemented with DM term contribute to enhance the range of quantum discord. It is revealed that the situations where quantum discord fails to indicate a sudden change of groundstate at finite temperature though indicating such a sudden change of groundstate at zero temperature. Dynamics of pairwise thermal quantum discord is considered as well. Thermal quantum discord vanishes in asymptotic limit regardless of its initial values, however, thermal entanglement suddenly disappears in finite time.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11075101)
文摘We study the dynamics of quantum discord and entanglement for two spin qubits coupled to a spin chain with Dzyaloshinsky Moriya interaction. In the case of a two-qubit with an initial pure state, quantum correlations decay to zero at the critical point of the environment in a very short time. In the case of a two-qubit with initial mixed state, it is found that quantum discord may get maximized due to the quantum critical behavior of the environment, while entanglement vanishes under the same condition. Besides, we observed a sudden transition between classical and quantum decoherence when only a single qubit interacts with the environment. The effects of Dzyaloshinsky-Moriya interaction on quantum correlations are considered in the two cases. The decay of quantum correlations is always strengthened by Dzyaloshinsky Moriya interaction.
基金Supported by the National Natural Science Foundation of China under Grant No. 11075101
文摘We investigate the pairwise thermal quantum discord in a three-qubit XXZ model with Dzyaloshinskii-Moriya (DM) interaction. We find that the effects of DM interaction on antiferromagnetic system is distinct from that of ferromagnetic system. The magnetic field supplemented with DM term contribute to enhance the range of quantum discord. It is revealed that the situations where quantum discord fails to indicate a sudden change of groundstate at finite temperature though indicating such a sudden change of groundstate at zero temperature. Dynamics of pairwise thermal quantum discord is considered as well. Thermal quantum discord vanishes in asymptotic limit regardless of its initial values, however, thermal entanglement suddenly disappears in finite time.