期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
面向联邦大语言模型训练的传输优化技术综述
1
作者
顿
婧
博
李卓
《计算机科学》
北大核心
2025年第1期42-55,共14页
随着人工智能技术的快速发展,各类大型语言模型不断涌现.但是专用大语言模型的用户及数据集大多具有隐私性和安全性要求,数据安全隐私问题亟待解决.在此背景下,联邦大语言模型应运而生并得到越来越多的关注.由于大型语言模型庞大的数据...
随着人工智能技术的快速发展,各类大型语言模型不断涌现.但是专用大语言模型的用户及数据集大多具有隐私性和安全性要求,数据安全隐私问题亟待解决.在此背景下,联邦大语言模型应运而生并得到越来越多的关注.由于大型语言模型庞大的数据量以及联邦学习的分布式架构,海量的参与节点与云服务器间进行大量的模型交换会产生较高的通信成本.为提升模型收敛速率,研究人员对面向联邦大语言模型训练的传输优化技术展开了研究.文章分析了联邦大语言模型所面临的挑战;综述了基于模型微调的传输优化方法、基于模型压缩的传输优化方法以及基于分布式并行处理的传输优化的优化问题;介绍了已有的开源联邦大语言模型以及所用到的传输优化技术,并对未来研究方向进行了展望.
展开更多
关键词
联邦学习
大语言模型
传输优化
通信开销
模型压缩
题名
面向联邦大语言模型训练的传输优化技术综述
1
作者
顿
婧
博
李卓
机构
网络文化与数字传播北京市重点实验室(北京信息科技大学)
北京信息科技大学计算机学院
出处
《计算机科学》
北大核心
2025年第1期42-55,共14页
基金
北京市自然科学基金(4232024)
国家重点研发计划(2022YFF0604502)。
文摘
随着人工智能技术的快速发展,各类大型语言模型不断涌现.但是专用大语言模型的用户及数据集大多具有隐私性和安全性要求,数据安全隐私问题亟待解决.在此背景下,联邦大语言模型应运而生并得到越来越多的关注.由于大型语言模型庞大的数据量以及联邦学习的分布式架构,海量的参与节点与云服务器间进行大量的模型交换会产生较高的通信成本.为提升模型收敛速率,研究人员对面向联邦大语言模型训练的传输优化技术展开了研究.文章分析了联邦大语言模型所面临的挑战;综述了基于模型微调的传输优化方法、基于模型压缩的传输优化方法以及基于分布式并行处理的传输优化的优化问题;介绍了已有的开源联邦大语言模型以及所用到的传输优化技术,并对未来研究方向进行了展望.
关键词
联邦学习
大语言模型
传输优化
通信开销
模型压缩
Keywords
Federated learning
Large language models
Transmission optimization
Communication overhead
Model compression
分类号
TP393 [自动化与计算机技术—计算机应用技术]
题名
作者
出处
发文年
被引量
操作
1
面向联邦大语言模型训练的传输优化技术综述
顿
婧
博
李卓
《计算机科学》
北大核心
2025
0
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部