铜原子能级结构的理论计算具有非常大的挑战性。本文基于多组态Dirac-Hartree-Fock(MCDHF)方法和相对论组态相互作用(RCI)方法,通过三个大规模的关联模型计算了单激发态3d^104p2P1/2、双激发态3d94s(3D)5s4D3/2,1/2,3d94s(3D)5s2D3/2,3d...铜原子能级结构的理论计算具有非常大的挑战性。本文基于多组态Dirac-Hartree-Fock(MCDHF)方法和相对论组态相互作用(RCI)方法,通过三个大规模的关联模型计算了单激发态3d^104p2P1/2、双激发态3d94s(3D)5s4D3/2,1/2,3d94s(3D)5s2D3/2,3d94s(1D)5s2D3/2以及离子态3d101S0能级和波函数。结果表明,铜原子能级结构对有限组态空间的选择极其敏感,双激发态3d94s(3D)5s4D3/2,1/2,3d94s(3D)5s2D3/2,3d94s(1D)5s2D3/2和离子态3d101S0与单激发态之间的能量差相对于已有实验结果均存在大约-0.4 e V的偏差,而计算得到的共振电子能量与实验结果符合得较好。此外,根据辐射跃迁矩阵元和非辐射跃迁矩阵元计算了双激发态的Fano参数q,并基于Fano理论得到了铜单激发态3d^104p2P1/2的总光电离截面,该理论考虑了直接光电离与光激发自电离之间的干涉效应,即共振3d94s(3D)5s4D3/2,1/2、3d94s(3D)5s2D3/2和3d94s(1D)5s2D3/2具有明显的非对称的Fano轮廓,表明光电离过程与光激发自电离过程之间的干涉对双激发态共振附近的光电离截面轮廓有着极其重要的影响。展开更多
基金National Natural Science Foundation of China(11320101003,11204243)Scientific Research Foundation of Physics of CPEE NWNU~~
文摘铜原子能级结构的理论计算具有非常大的挑战性。本文基于多组态Dirac-Hartree-Fock(MCDHF)方法和相对论组态相互作用(RCI)方法,通过三个大规模的关联模型计算了单激发态3d^104p2P1/2、双激发态3d94s(3D)5s4D3/2,1/2,3d94s(3D)5s2D3/2,3d94s(1D)5s2D3/2以及离子态3d101S0能级和波函数。结果表明,铜原子能级结构对有限组态空间的选择极其敏感,双激发态3d94s(3D)5s4D3/2,1/2,3d94s(3D)5s2D3/2,3d94s(1D)5s2D3/2和离子态3d101S0与单激发态之间的能量差相对于已有实验结果均存在大约-0.4 e V的偏差,而计算得到的共振电子能量与实验结果符合得较好。此外,根据辐射跃迁矩阵元和非辐射跃迁矩阵元计算了双激发态的Fano参数q,并基于Fano理论得到了铜单激发态3d^104p2P1/2的总光电离截面,该理论考虑了直接光电离与光激发自电离之间的干涉效应,即共振3d94s(3D)5s4D3/2,1/2、3d94s(3D)5s2D3/2和3d94s(1D)5s2D3/2具有明显的非对称的Fano轮廓,表明光电离过程与光激发自电离过程之间的干涉对双激发态共振附近的光电离截面轮廓有着极其重要的影响。