期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于聚类变分自编码器的协同过滤算法
被引量:
4
1
作者
韩浩
先
叶春明
《计算机系统应用》
2019年第9期162-167,共6页
针对协同过滤推荐模型的数据稀疏性问题,提出一种带有聚类隐变量的变分自编码器,用于处理用户的隐式反馈数据.该深度生成模型既能学习到隐变量的特征分布,同时又能完成对特征的聚类.先以多项式似然来重构原始数据,再用贝叶斯变分推断估...
针对协同过滤推荐模型的数据稀疏性问题,提出一种带有聚类隐变量的变分自编码器,用于处理用户的隐式反馈数据.该深度生成模型既能学习到隐变量的特征分布,同时又能完成对特征的聚类.先以多项式似然来重构原始数据,再用贝叶斯变分推断估计参数,并且将正则化系数引入到模型当中,通过调节其大小能够避免过度正则化,使模型的拟合效果更好.这种非线性的概率模型对缺失评分的预测有更好的建模能力.在MovieLens的三个数据集上的实验结果表明,该算法相比较于其他先进的基线有更优秀的推荐性能.
展开更多
关键词
推荐系统
协同过滤
深度生成模型
变分自编码器
聚类
下载PDF
职称材料
题名
基于聚类变分自编码器的协同过滤算法
被引量:
4
1
作者
韩浩
先
叶春明
机构
上海理工大学管理学院
出处
《计算机系统应用》
2019年第9期162-167,共6页
基金
国家自然科学基金(71840003)
上海理工大学科技发展项目(2018KJFZ043)~~
文摘
针对协同过滤推荐模型的数据稀疏性问题,提出一种带有聚类隐变量的变分自编码器,用于处理用户的隐式反馈数据.该深度生成模型既能学习到隐变量的特征分布,同时又能完成对特征的聚类.先以多项式似然来重构原始数据,再用贝叶斯变分推断估计参数,并且将正则化系数引入到模型当中,通过调节其大小能够避免过度正则化,使模型的拟合效果更好.这种非线性的概率模型对缺失评分的预测有更好的建模能力.在MovieLens的三个数据集上的实验结果表明,该算法相比较于其他先进的基线有更优秀的推荐性能.
关键词
推荐系统
协同过滤
深度生成模型
变分自编码器
聚类
Keywords
recommendation system
collaborative filtering
deep generative model
Variational Auto Encoder(VAE)
clustering
分类号
TP3 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于聚类变分自编码器的协同过滤算法
韩浩
先
叶春明
《计算机系统应用》
2019
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部