期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于LDA和深度学习的文本分类方法
被引量:
14
1
作者
郑飞
韦德
壕
黄胜
《计算机工程与设计》
北大核心
2020年第8期2184-2189,共6页
针对文档集里的文本长度长短不一和特征提取困难等问题,提出一种基于LDA和深度学习的文本分类方法。结合LDA主题模型和Word2Vec词向量模型完成对文本词向量矩阵的构建,由结合融合层的卷积神经网络对构建好的词向量矩阵获取联合特征,将...
针对文档集里的文本长度长短不一和特征提取困难等问题,提出一种基于LDA和深度学习的文本分类方法。结合LDA主题模型和Word2Vec词向量模型完成对文本词向量矩阵的构建,由结合融合层的卷积神经网络对构建好的词向量矩阵获取联合特征,将获取的特征送到softmax分类器得到分类结果。该方法在文本情感分类上进行实验,实验结果表明,该方法解决了文档集里的文本长度长短不一和特征提取困难等问题,在模型评价指标上都得到了提高。
展开更多
关键词
文本长度
深度学习
词向量矩阵
卷积神经网络
情感分类
下载PDF
职称材料
题名
基于LDA和深度学习的文本分类方法
被引量:
14
1
作者
郑飞
韦德
壕
黄胜
机构
重庆邮电大学通信与信息工程学院
重庆邮电大学
出处
《计算机工程与设计》
北大核心
2020年第8期2184-2189,共6页
基金
国家自然科学基金项目(61371096)。
文摘
针对文档集里的文本长度长短不一和特征提取困难等问题,提出一种基于LDA和深度学习的文本分类方法。结合LDA主题模型和Word2Vec词向量模型完成对文本词向量矩阵的构建,由结合融合层的卷积神经网络对构建好的词向量矩阵获取联合特征,将获取的特征送到softmax分类器得到分类结果。该方法在文本情感分类上进行实验,实验结果表明,该方法解决了文档集里的文本长度长短不一和特征提取困难等问题,在模型评价指标上都得到了提高。
关键词
文本长度
深度学习
词向量矩阵
卷积神经网络
情感分类
Keywords
text length
deep learning
word vector matrix
CNN
sentiment classification
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于LDA和深度学习的文本分类方法
郑飞
韦德
壕
黄胜
《计算机工程与设计》
北大核心
2020
14
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部