A large number of ZnS nanosaws are synthesized on Si substrates in the presence of Au catalyst by thermally evaporating ZnS powder. Morphologies and structures of thus-grown ZnS nanosaws are characterized by a field e...A large number of ZnS nanosaws are synthesized on Si substrates in the presence of Au catalyst by thermally evaporating ZnS powder. Morphologies and structures of thus-grown ZnS nanosaws are characterized by a field emission scanning electron microscopy (FE-SEM) and a transmission electron microscopy (TEM). The results show that temperature of the Si substrates used for collection of the products is a critical experimental parameter for the formation of ZnS nanostruetures with different morphologies. The growth mechanism of the ZnS nanosaws is discussed on the basis of the experimental findings.展开更多
The microstructure, martensite transformation behavior, thermal stability and shape memory behavior of Ti–20Zr– 10Ta high temperature shape memory alloy were investigated. The Ti–20Zr–10Ta alloy exhibited a revers...The microstructure, martensite transformation behavior, thermal stability and shape memory behavior of Ti–20Zr– 10Ta high temperature shape memory alloy were investigated. The Ti–20Zr–10Ta alloy exhibited a reversible transformation with the high martensite transformation temperature of 500oC and good thermal stability. The alloy displayed the elongation of 15% and a maximum recovery stain of 5.5% with 8% pre-strain.展开更多
The effect of thermo-mechanical treatment on microstructure evolution, martensite transformation, and shape memory behavior of Ti–15Ta–15Zr high temperature shape memory alloy were investigated. Different martensite...The effect of thermo-mechanical treatment on microstructure evolution, martensite transformation, and shape memory behavior of Ti–15Ta–15Zr high temperature shape memory alloy were investigated. Different martensite morphologies were found with different annealing temperatures. The Ti–15Ta–15Zr alloy exhibits almost perfect shape memory recovery strain of 6% after annealing at 973 K for 0.5 h.展开更多
The microstructural, phase transformation and magnetic properties of Ni Mn-Ga alloy fabricated using the spark plasma sintering method have been investigated. The results show that both the as-sintered and annealed si...The microstructural, phase transformation and magnetic properties of Ni Mn-Ga alloy fabricated using the spark plasma sintering method have been investigated. The results show that both the as-sintered and annealed sintered specimens exhibit typical martensitic transformation behaviours. The martensite of the sintered specimen after annealing exhibits a ferromagnetic nature. Moreover, study of the fracture surface indicates that the transgranular fracture con- tributes to the higher ductility of sintered Ni-Mn-Ga alloy. In addition, the transformation strain in sintered Ni-Mn-Ga alloy is studied for the first time.展开更多
Nanocomposite is proved to be an effective method to improve thermoelectric performance.In the present study,graphene is introduced into p-type skutterudite La0.8Ti0.1Ga0.1Fe3CoSb12 by plasma-enhanced chemical vapor d...Nanocomposite is proved to be an effective method to improve thermoelectric performance.In the present study,graphene is introduced into p-type skutterudite La0.8Ti0.1Ga0.1Fe3CoSb12 by plasma-enhanced chemical vapor deposition(PECVD)method to form skutterudite/graphene nanocomposites.It is demonstrated that the graphene has no obvious effect on the electrical conductivity of La0.8Ti0.1Ga0.1Fe3CoSb12,but the Seebeck coefficient is slightly improved at high temperature,thereby leading to high power factor.Furthermore,due to the enhancement of phonon scattering by the graphene,the lattice thermal conductivity is reduced significantly.Ultimately,the maximum z T value of La0.8Ti0.1Ga0.1Fe3CoSb12/graphene is higher than that of graphene-free alloy and reaches to 1.0 at 723 K.Such an approach raised by us enriches prospects for future practical application.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 50772024, the Opening Research Foundation of National Centre for Nanoscience and Technology (NCNST) of China, and the National Basic Research Programme of China under Grant No 2003CB716900.
文摘A large number of ZnS nanosaws are synthesized on Si substrates in the presence of Au catalyst by thermally evaporating ZnS powder. Morphologies and structures of thus-grown ZnS nanosaws are characterized by a field emission scanning electron microscopy (FE-SEM) and a transmission electron microscopy (TEM). The results show that temperature of the Si substrates used for collection of the products is a critical experimental parameter for the formation of ZnS nanostruetures with different morphologies. The growth mechanism of the ZnS nanosaws is discussed on the basis of the experimental findings.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51071059 and 51271065) and the National Basic Research Program of China (Grant Nt). 2012CB619400)
文摘The microstructure, martensite transformation behavior, thermal stability and shape memory behavior of Ti–20Zr– 10Ta high temperature shape memory alloy were investigated. The Ti–20Zr–10Ta alloy exhibited a reversible transformation with the high martensite transformation temperature of 500oC and good thermal stability. The alloy displayed the elongation of 15% and a maximum recovery stain of 5.5% with 8% pre-strain.
基金Project support by the National Natural Science Foundation of China(Grant No.51501049)China Postdoctoral Science Foundation(Grant No.2015M571405)the Fundamental Research Funds for the Central Universities,China(Grant No.HIT.NSRIF.20163)
文摘The effect of thermo-mechanical treatment on microstructure evolution, martensite transformation, and shape memory behavior of Ti–15Ta–15Zr high temperature shape memory alloy were investigated. Different martensite morphologies were found with different annealing temperatures. The Ti–15Ta–15Zr alloy exhibits almost perfect shape memory recovery strain of 6% after annealing at 973 K for 0.5 h.
基金supported by the National Natural Science Foundation of China (Grant No. 50971052)the Scientific Research Fund of Heilongjiang Provincial Education Department of China (Grant No. 11531059)
文摘The microstructural, phase transformation and magnetic properties of Ni Mn-Ga alloy fabricated using the spark plasma sintering method have been investigated. The results show that both the as-sintered and annealed sintered specimens exhibit typical martensitic transformation behaviours. The martensite of the sintered specimen after annealing exhibits a ferromagnetic nature. Moreover, study of the fracture surface indicates that the transgranular fracture con- tributes to the higher ductility of sintered Ni-Mn-Ga alloy. In addition, the transformation strain in sintered Ni-Mn-Ga alloy is studied for the first time.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51622101,51771065,and 51471061)
文摘Nanocomposite is proved to be an effective method to improve thermoelectric performance.In the present study,graphene is introduced into p-type skutterudite La0.8Ti0.1Ga0.1Fe3CoSb12 by plasma-enhanced chemical vapor deposition(PECVD)method to form skutterudite/graphene nanocomposites.It is demonstrated that the graphene has no obvious effect on the electrical conductivity of La0.8Ti0.1Ga0.1Fe3CoSb12,but the Seebeck coefficient is slightly improved at high temperature,thereby leading to high power factor.Furthermore,due to the enhancement of phonon scattering by the graphene,the lattice thermal conductivity is reduced significantly.Ultimately,the maximum z T value of La0.8Ti0.1Ga0.1Fe3CoSb12/graphene is higher than that of graphene-free alloy and reaches to 1.0 at 723 K.Such an approach raised by us enriches prospects for future practical application.