期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的图像超分辨率研究综述 被引量:5
1
作者 李洪安 郑峭雪 +3 位作者 陶若 张敏 李占利 康宝生 《图学学报》 CSCD 北大核心 2023年第1期1-15,共15页
超分辨率(SR)是一类重要的数字图像处理技术,其根据一个观测者得到的低分辨率(LR)图像重建并输出一个相应的高分辨率(HR)图像,从而提高现代数字图像的分辨率。SR在数字图像压缩与传输、医学成像、遥感成像、视频感知与监控等学科中的研... 超分辨率(SR)是一类重要的数字图像处理技术,其根据一个观测者得到的低分辨率(LR)图像重建并输出一个相应的高分辨率(HR)图像,从而提高现代数字图像的分辨率。SR在数字图像压缩与传输、医学成像、遥感成像、视频感知与监控等学科中的研究与应用价值巨大。随着深度学习的快速发展,结合最新的深度学习方法,可以为SR问题提供创新性的解决方案。首先回顾SR的背景意义、发展过程以及将深度学习应用于SR的技术价值。其次简要介绍传统SR算法的基本方法、分类和优缺点;按照不同的实现技术和网络类型对基于深度学习的SR方法进行了分类介绍,重点分析对比了卷积神经网络(CNN)、残差网络(ResNet)和生成对抗网络(GAN)在SR中的应用。然后介绍主要评价指标和解决策略,并对不同的SR算法在标准数据集中的性能表现进行对比。最后总结基于深度学习的SR算法,并对未来发展趋势进行展望。 展开更多
关键词 超分辨率 深度学习 评价指标 退化模型 数据集
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部