In order to effectively improve the properties of anion exchange membrane(AEM)materials,a series of novel poly(aryl ether nitrile)s with flexible side-chain-type quaternary phosphonium cations(PAEN-TPP-x)were designed...In order to effectively improve the properties of anion exchange membrane(AEM)materials,a series of novel poly(aryl ether nitrile)s with flexible side-chain-type quaternary phosphonium cations(PAEN-TPP-x)were designed and prepared on the basis of considering the influences of polymer backbone,cationic group species and the connection way between the cations and polymer chains.The synthetic method,structure and ion-exchange capacity,water absorption,swelling,hydroxide conductivity and alkaline stability of the obtained AEMs were studied.A comparative study with other reported AEMs was also performed for further exploration of the relationship between the structure and properties.These AEMs with flexible side-chain-type quaternary phosphonium cations displayed good comprehensive properties.Their water uptakes and swelling ratios were in the range of 11.6%–22.7%and 4.4%–7.8%at 60℃,respectively.They had hydroxide conductivity in the range of 28.6–45.8 mS cm^-1 at 60℃.Moreover,these AEMs also exhibited improved alkaline stability,and the hydroxide conductivity for PAEN-TPP-0.35 could remain 82.1%and 80.6%of its initial value at 60 and 90℃in 2 mol L^-1 NaOH solution for480 h,respectively.展开更多
Increasing the local charge density of flexible side-chain cations in the hydrophilic segments of anion exchange membranes(AEMs)is helpful for improving their properties.However,due to limitations of structural design...Increasing the local charge density of flexible side-chain cations in the hydrophilic segments of anion exchange membranes(AEMs)is helpful for improving their properties.However,due to limitations of structural design strategies and available synthetic methods,very few AEMs with more than four flexible side-chain cationic groups in hydrophilic segments have been reported.In order to further improve the hydroxide conductivity,alkaline stability and dimensional stability,herein we report a series of AEMs containing eight flexible side-chain cations in hydrophilic segments,based on poly(aryl ether sulfone)s(PAES).The synthesis,ion exchange capacity(IEC),water absorption,dimensional swelling,alkaline stability and hydroxide conductivity of the obtained membranes(PAES-8TMA-x)were examined and the relationships between structures and properties of different types of AEMs were also systematically compared.The resulting AEMs with IEC values of1.76–2.76 mmol g^-1 displayed comprehensively desirable properties,with hydroxide conductivities of 62.7–92.8 m S cm^-1 and dimensional swelling in the range of 8.3%to15.8%at 60℃.The IEC and hydroxide conductivity for a representative sample,PAES-8TMA-0.35,maintained 82.2%and 79.6%of the initial values after being immersed in2 mol L^-1 Na OH at 90℃ for 480 h,respectively.This study expands the design and preparation of AEMs containing high local densities of flexible side chain cations,and provides a new strategy for new AEM materials.展开更多
基金supported by the National Natural Science Foundation of China (21404016)the Key Research Program of Jiangsu Province (BE2017645)+1 种基金the Six Talent Peaks Project of Jiangsu Province (XCL-078)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘In order to effectively improve the properties of anion exchange membrane(AEM)materials,a series of novel poly(aryl ether nitrile)s with flexible side-chain-type quaternary phosphonium cations(PAEN-TPP-x)were designed and prepared on the basis of considering the influences of polymer backbone,cationic group species and the connection way between the cations and polymer chains.The synthetic method,structure and ion-exchange capacity,water absorption,swelling,hydroxide conductivity and alkaline stability of the obtained AEMs were studied.A comparative study with other reported AEMs was also performed for further exploration of the relationship between the structure and properties.These AEMs with flexible side-chain-type quaternary phosphonium cations displayed good comprehensive properties.Their water uptakes and swelling ratios were in the range of 11.6%–22.7%and 4.4%–7.8%at 60℃,respectively.They had hydroxide conductivity in the range of 28.6–45.8 mS cm^-1 at 60℃.Moreover,these AEMs also exhibited improved alkaline stability,and the hydroxide conductivity for PAEN-TPP-0.35 could remain 82.1%and 80.6%of its initial value at 60 and 90℃in 2 mol L^-1 NaOH solution for480 h,respectively.
基金supported by the Six Talent Peaks Project of Jiangsu Province(XCL-078)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20-2528)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China。
文摘Increasing the local charge density of flexible side-chain cations in the hydrophilic segments of anion exchange membranes(AEMs)is helpful for improving their properties.However,due to limitations of structural design strategies and available synthetic methods,very few AEMs with more than four flexible side-chain cationic groups in hydrophilic segments have been reported.In order to further improve the hydroxide conductivity,alkaline stability and dimensional stability,herein we report a series of AEMs containing eight flexible side-chain cations in hydrophilic segments,based on poly(aryl ether sulfone)s(PAES).The synthesis,ion exchange capacity(IEC),water absorption,dimensional swelling,alkaline stability and hydroxide conductivity of the obtained membranes(PAES-8TMA-x)were examined and the relationships between structures and properties of different types of AEMs were also systematically compared.The resulting AEMs with IEC values of1.76–2.76 mmol g^-1 displayed comprehensively desirable properties,with hydroxide conductivities of 62.7–92.8 m S cm^-1 and dimensional swelling in the range of 8.3%to15.8%at 60℃.The IEC and hydroxide conductivity for a representative sample,PAES-8TMA-0.35,maintained 82.2%and 79.6%of the initial values after being immersed in2 mol L^-1 Na OH at 90℃ for 480 h,respectively.This study expands the design and preparation of AEMs containing high local densities of flexible side chain cations,and provides a new strategy for new AEM materials.