期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络和迁移学习的肺结节检测
被引量:
10
1
作者
陈
道
争
江倩
《计算机工程与设计》
北大核心
2021年第1期240-247,共8页
为解决训练样本不足的问题,提出一种基于卷积神经网络和迁移学习的X光胸片肺结节检测方法。基于Keras深度学习框架,对比分析3种预训练卷积神经网络模型的分类性能,在此基础上进一步探究迁移学习的有效性。在公开的JSRT数据集上进行验证...
为解决训练样本不足的问题,提出一种基于卷积神经网络和迁移学习的X光胸片肺结节检测方法。基于Keras深度学习框架,对比分析3种预训练卷积神经网络模型的分类性能,在此基础上进一步探究迁移学习的有效性。在公开的JSRT数据集上进行验证,提出方法获得了93.75%的准确度、94.36%的敏感度、92.74%的特异度以及98.20%的AUC值。与已有的其它研究进行对比,实现了最高的敏感度和较低的假阳性率,验证了迁移学习的有效性和所提算法的可行性。
展开更多
关键词
肺结节
卷积神经网络
迁移学习
计算机辅助诊断
医学影像分析
下载PDF
职称材料
题名
基于卷积神经网络和迁移学习的肺结节检测
被引量:
10
1
作者
陈
道
争
江倩
机构
上海海事大学信息化办公室
上海海事大学信息工程学院
出处
《计算机工程与设计》
北大核心
2021年第1期240-247,共8页
基金
国家自然科学基金项目(61303099)。
文摘
为解决训练样本不足的问题,提出一种基于卷积神经网络和迁移学习的X光胸片肺结节检测方法。基于Keras深度学习框架,对比分析3种预训练卷积神经网络模型的分类性能,在此基础上进一步探究迁移学习的有效性。在公开的JSRT数据集上进行验证,提出方法获得了93.75%的准确度、94.36%的敏感度、92.74%的特异度以及98.20%的AUC值。与已有的其它研究进行对比,实现了最高的敏感度和较低的假阳性率,验证了迁移学习的有效性和所提算法的可行性。
关键词
肺结节
卷积神经网络
迁移学习
计算机辅助诊断
医学影像分析
Keywords
pulmonary nodule
convolutional neural networks
transfer learning
computer-aided diagnosis
medical image analysis
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络和迁移学习的肺结节检测
陈
道
争
江倩
《计算机工程与设计》
北大核心
2021
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部