We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator(SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature b...We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator(SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam–Berry phase(PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases.展开更多
基金Supported by National Natural Science Foundation of China(11547018)Research Foundation of Education Bureau of Hubei Province(Q20142706)+1 种基金Natural Science Foundation of Hubei Engineering University(z2013028)Natural Science Foundation of Hubei Province(2014CFB579)~~
基金Project supported by the National Natural Science Foundation of China(Grant No.11547017)the Hubei Engineering University Research Foundation,China(Grant No.z2014001)the Natural Science Foundation of Hubei Province,China(Grant No.2014CFB578)
文摘We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator(SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam–Berry phase(PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases.