Excellent flexibility, rapid response and high sensitivity are key parameters of strain sensor that can sustain and detect various deformations including stretching, bending and torsion. Developing organic/inorganic n...Excellent flexibility, rapid response and high sensitivity are key parameters of strain sensor that can sustain and detect various deformations including stretching, bending and torsion. Developing organic/inorganic nanostructured composites with improved electromechanical performance is still a great challenge due to the instability in the combination and the fragility of inorganic nanomaterials. Herein, we report a newtype strain sensor based on poly(vinylidene fluoride–trifluoroethylene) nanofibers/ZnO nanowires composites, taking advantage of electrospinning and hydrothermal process. The as-fabricated device exhibits a high flexibility, ultrafast response and remarkable sensitivity with a gauge factor of 4.59. Especially, it has the capability to detect various stimulations including mechanical deformations such as stretching and bending. The device can easily detect muscle movements like finger bending and straightening.展开更多
Wire-shaped supercapacitors(SCs) possessing light-weight, good flexibility and weavability have caught much attention, but it is still a challenge to extend the lifespan of the devices with gradual aging due to the ...Wire-shaped supercapacitors(SCs) possessing light-weight, good flexibility and weavability have caught much attention, but it is still a challenge to extend the lifespan of the devices with gradual aging due to the rough usage or external factors. Herein, we report a new stretchable and selfhealable wire-shaped SC. In the typical process, two polyvinyl alcohol/potassium hydroxide(PVA/KOH) hydrogel wrapped with urchin-like NiCo2O4 nanomaterials were twisted together to form a complete SC devices. It is noted that the as-prepared PVA hydrogel can be easily stretched up to 300% with small tensile stress of 12.51 kPa, superior to nearly 350 kPa at 300%strain of the polyurethane. Moreover, the wire-like SCs exhibit excellent electrochemical performance with areal capacitance of 3.88 mF cm^-2 at the current density of 0.053 mA cm^-2, good cycling stability maintaining 88.23% after 1000 charge/discharge cycles, and 82.19% capacitance retention even after four damaging/healing cycles. These results indicate that wireshaped SCs with two twisted NiCo2O4 coated polyvinyl alcohol hydrogel fibers is a promising structure for achieving the goal of high stability and long-life time. This work may provide a new solution for new generation of self-healable and wearable electronic devices.展开更多
针对降凝剂分子结构的设计和优化问题,本文运用Monte Carlo模型模拟研究了丙烯酸十八酯-马来酸酐-醋酸乙烯酯三元共聚物(An Mm Vp)同原油蜡烃组分间的相容性。以理论计算结果为依据指导合成了AMV共聚物降凝剂,并进行了红外表征和实验验...针对降凝剂分子结构的设计和优化问题,本文运用Monte Carlo模型模拟研究了丙烯酸十八酯-马来酸酐-醋酸乙烯酯三元共聚物(An Mm Vp)同原油蜡烃组分间的相容性。以理论计算结果为依据指导合成了AMV共聚物降凝剂,并进行了红外表征和实验验证,实验结果表明,当亲油基团(丙烯酸十八酯,AA18)与极性基团(马来酸酐-醋酸乙烯酯,MA-VA)摩尔比为8∶2时,二者混合能最低,原油对A8M1V1降凝剂感受性最佳,凝点降低值达8℃,是理想的原油降凝剂结构,这与理论计算结果基本一致。该研究为原油降凝剂分子结构的设计和优化提供了有效途径。展开更多
基金supported by the National Natural Science Foundationof China(61377033,61574132 and 61504136)
文摘Excellent flexibility, rapid response and high sensitivity are key parameters of strain sensor that can sustain and detect various deformations including stretching, bending and torsion. Developing organic/inorganic nanostructured composites with improved electromechanical performance is still a great challenge due to the instability in the combination and the fragility of inorganic nanomaterials. Herein, we report a newtype strain sensor based on poly(vinylidene fluoride–trifluoroethylene) nanofibers/ZnO nanowires composites, taking advantage of electrospinning and hydrothermal process. The as-fabricated device exhibits a high flexibility, ultrafast response and remarkable sensitivity with a gauge factor of 4.59. Especially, it has the capability to detect various stimulations including mechanical deformations such as stretching and bending. The device can easily detect muscle movements like finger bending and straightening.
基金supported by the National Natural Science Foundation of China (61625404 and 61504136)Beijing Natural Science Foundation (4162062)the Key Research Program of Frontiers Sciences,CAS(QYZDY-SSW-JSC004)
文摘Wire-shaped supercapacitors(SCs) possessing light-weight, good flexibility and weavability have caught much attention, but it is still a challenge to extend the lifespan of the devices with gradual aging due to the rough usage or external factors. Herein, we report a new stretchable and selfhealable wire-shaped SC. In the typical process, two polyvinyl alcohol/potassium hydroxide(PVA/KOH) hydrogel wrapped with urchin-like NiCo2O4 nanomaterials were twisted together to form a complete SC devices. It is noted that the as-prepared PVA hydrogel can be easily stretched up to 300% with small tensile stress of 12.51 kPa, superior to nearly 350 kPa at 300%strain of the polyurethane. Moreover, the wire-like SCs exhibit excellent electrochemical performance with areal capacitance of 3.88 mF cm^-2 at the current density of 0.053 mA cm^-2, good cycling stability maintaining 88.23% after 1000 charge/discharge cycles, and 82.19% capacitance retention even after four damaging/healing cycles. These results indicate that wireshaped SCs with two twisted NiCo2O4 coated polyvinyl alcohol hydrogel fibers is a promising structure for achieving the goal of high stability and long-life time. This work may provide a new solution for new generation of self-healable and wearable electronic devices.
文摘针对降凝剂分子结构的设计和优化问题,本文运用Monte Carlo模型模拟研究了丙烯酸十八酯-马来酸酐-醋酸乙烯酯三元共聚物(An Mm Vp)同原油蜡烃组分间的相容性。以理论计算结果为依据指导合成了AMV共聚物降凝剂,并进行了红外表征和实验验证,实验结果表明,当亲油基团(丙烯酸十八酯,AA18)与极性基团(马来酸酐-醋酸乙烯酯,MA-VA)摩尔比为8∶2时,二者混合能最低,原油对A8M1V1降凝剂感受性最佳,凝点降低值达8℃,是理想的原油降凝剂结构,这与理论计算结果基本一致。该研究为原油降凝剂分子结构的设计和优化提供了有效途径。