In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified medi...In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.展开更多
文本图像二值化算法的优劣直接影响图像文本字符识别的准确率。秦简文字图像受制于背景光照欠均衡和噪声复杂等因素影响,传统文本图像二值化算法无法准确分割其前景和背景,秦简文字轮廓等特征无法准确提取,二值化效果达不到文本高准确...文本图像二值化算法的优劣直接影响图像文本字符识别的准确率。秦简文字图像受制于背景光照欠均衡和噪声复杂等因素影响,传统文本图像二值化算法无法准确分割其前景和背景,秦简文字轮廓等特征无法准确提取,二值化效果达不到文本高准确识别要求。针对图像质量不平衡的秦简文字图像提出了一种基于图像信噪比自适应阈值模型的二值化算法。首先,将图像进行灰度转换、调整亮度和降噪等一系列二值化前的预先处理;其次,根据图像信噪比(SNR)大小自适应设置阈值,分别采用OTSU算法和Bernsen算法进行二值化处理;最后,由峰值信噪比(PSNR)与结构相似性(SSIM)评价指标择优选取二值化图像,从而准确地提取秦简图像二值化后的文字轮廓。在自建的秦简文字数据集QBS text dataset上的测试结果表明,该算法的二值化结果保留了更多的秦简文字细节特征和文字轮廓,其峰值信噪比和精确率也分别达到25.61 dB和76.67%,相较其他经典文本图像二值化算法,其性能指标均有较大提升。展开更多
精密的时间作为科研和工程技术等方面的基本物理参量,其测量的基本手段是精密时间一数字转换电路(Time—to-Time Digital Converter,简称TDC).当前主流的TDC实现方法(“粗”时间测量加”细”时间测量)能达到亚纳秒的时间分辨率...精密的时间作为科研和工程技术等方面的基本物理参量,其测量的基本手段是精密时间一数字转换电路(Time—to-Time Digital Converter,简称TDC).当前主流的TDC实现方法(“粗”时间测量加”细”时间测量)能达到亚纳秒的时间分辨率,但很难实现一致性很好的精确时间延时,误差较大.基于FPGA具有丰富专用进位连线的资源,对利用现场可编程逻辑器件FPGA中的专用进位连线实现时间内插链,从而实现精密TDC设计,灵活性好,成本低.并对TDC进行了时序仿真,测量的精度可达70ps,取得了一致性很好的精确时间延时.展开更多
基金Project(2016JJ4074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(14C0920)supported by the Hunan Provincial Education Department,ChinaProject(61771191)supported by the National Natural Science Foundation of China
文摘In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.
文摘文本图像二值化算法的优劣直接影响图像文本字符识别的准确率。秦简文字图像受制于背景光照欠均衡和噪声复杂等因素影响,传统文本图像二值化算法无法准确分割其前景和背景,秦简文字轮廓等特征无法准确提取,二值化效果达不到文本高准确识别要求。针对图像质量不平衡的秦简文字图像提出了一种基于图像信噪比自适应阈值模型的二值化算法。首先,将图像进行灰度转换、调整亮度和降噪等一系列二值化前的预先处理;其次,根据图像信噪比(SNR)大小自适应设置阈值,分别采用OTSU算法和Bernsen算法进行二值化处理;最后,由峰值信噪比(PSNR)与结构相似性(SSIM)评价指标择优选取二值化图像,从而准确地提取秦简图像二值化后的文字轮廓。在自建的秦简文字数据集QBS text dataset上的测试结果表明,该算法的二值化结果保留了更多的秦简文字细节特征和文字轮廓,其峰值信噪比和精确率也分别达到25.61 dB和76.67%,相较其他经典文本图像二值化算法,其性能指标均有较大提升。
文摘精密的时间作为科研和工程技术等方面的基本物理参量,其测量的基本手段是精密时间一数字转换电路(Time—to-Time Digital Converter,简称TDC).当前主流的TDC实现方法(“粗”时间测量加”细”时间测量)能达到亚纳秒的时间分辨率,但很难实现一致性很好的精确时间延时,误差较大.基于FPGA具有丰富专用进位连线的资源,对利用现场可编程逻辑器件FPGA中的专用进位连线实现时间内插链,从而实现精密TDC设计,灵活性好,成本低.并对TDC进行了时序仿真,测量的精度可达70ps,取得了一致性很好的精确时间延时.