Climate extreme events and their changes can generally exert severe impacts on society and ecosystems and cause large economic losses each year. Robust projections of their future changes are thus urgently important f...Climate extreme events and their changes can generally exert severe impacts on society and ecosystems and cause large economic losses each year. Robust projections of their future changes are thus urgently important for policymaking to provide reliable information with respect to climate mitigation and adaptation.展开更多
There is overwhelming evidence that anthropogenic activity has exerted a great influence on climate extremes,especially on heat events at continental to global scales[1].Recently,increasing evidence has also identifie...There is overwhelming evidence that anthropogenic activity has exerted a great influence on climate extremes,especially on heat events at continental to global scales[1].Recently,increasing evidence has also identified the anthropogenic influence on climate extremes over China[2-4].展开更多
Projected changes in summer precipitation characteristics in China during the 21st century are assessed using the monthly precipitation outputs of the ensemble of three "best" models under the Special Report on Emis...Projected changes in summer precipitation characteristics in China during the 21st century are assessed using the monthly precipitation outputs of the ensemble of three "best" models under the Special Report on Emissions Scenarios (SRES) A1B, A2, and B1 scenarios. The excellent reproducibility of the models both in spatial and temporal patterns for the precipitation in China makes the projected summer precipitation change more believable for the future 100 years. All the three scenarios experiments indicate a consistent enhancement of summer precipitation in China in the 21st century. However, the projected summer precipitation in China demonstrates large variability between sub-regions. The projected increase in precipitation in South China is significant and persistent, as well as in North China. Meanwhile, in the early period of the 21st century, the region of Northeast China is projected to be much drier than the present. But, this situation changes and the precipitation intensifies later, with a precipitation anomaly increase of 12.4%0-20.4% at the end of the 21st century. The region of the Xinjiang Province probably undergoes a drying trend in the future 100 years, and is projected to decrease by 1.7%-3.6% at the end of the 21st century. There is no significant long-term change of the projected summer precipitation in the lower reaches of the Yangtze River valley. A high level of agreement of the ensemble of the regional precipitation change in some parts of China is found across scenarios but smaller changes are projected for the B1 scenario and slightly larger changes for the A2 scenario.展开更多
Based on daily precipitation data, the spatial-temporal features of heavy rainfall events (HREs) during 1960-2009 are investigated. The results indicate that the HREs experienced strong decadal variability in the pa...Based on daily precipitation data, the spatial-temporal features of heavy rainfall events (HREs) during 1960-2009 are investigated. The results indicate that the HREs experienced strong decadal variability in the past 50 years, and the decadal features varied across regions. More HRE days are observed in the 1960s, 1980s, and 1999s over Northeast China (NEC); in the 1960s, 1970s, and 1990s over North China (NC); in the early 1960s, 1980s, and 2000s over the Huaihe River basin (HR); in the 1970s 1990s over the mid-lower reaches of the Yangtze River valley (YR); and in the 1970s and 1990s over South China (SC). These decadal changes of HRE days in eastern China are closely associated with the decadal variations of water content and stratification stability of the local atmosphere. The intensity of HREs in each sub-region is also characterized by strong decadal variability. The HRE intensity and frequency co-vary on the long-term trend, and show consistent variability over NEC, NC, and YR, but inconsistent variability over SC and HR. Further analysis of the relationships between the annual rainfall and HRE frequency as well as intensity indicates that the HRE frequency is the major contributor to the total rainfall variability in eastern China, while the HRE intensity shows only relative weak contribution.展开更多
基金This work was jointly supported by the National Natural Science Foundation of China(41991284 and 41922034)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23090102)the National Key Research and Development Program of China(2016YFA0602401).
文摘Climate extreme events and their changes can generally exert severe impacts on society and ecosystems and cause large economic losses each year. Robust projections of their future changes are thus urgently important for policymaking to provide reliable information with respect to climate mitigation and adaptation.
基金jointly supported by the National Natural Science Foundation of China(41922034,41991284,and42075021)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23090102)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0102)。
文摘There is overwhelming evidence that anthropogenic activity has exerted a great influence on climate extremes,especially on heat events at continental to global scales[1].Recently,increasing evidence has also identified the anthropogenic influence on climate extremes over China[2-4].
基金supported by the National Basic Research Program of China (Grant No2009CB421406)the Chinese Academy of Sciences under Grant KZCX2-YW-Q1-02+1 种基金National Key Technologies R & D Program Project (Grant No 2007BAC03A01)the National Natural Science Foundation of China (GrantNo 40631005)
文摘Projected changes in summer precipitation characteristics in China during the 21st century are assessed using the monthly precipitation outputs of the ensemble of three "best" models under the Special Report on Emissions Scenarios (SRES) A1B, A2, and B1 scenarios. The excellent reproducibility of the models both in spatial and temporal patterns for the precipitation in China makes the projected summer precipitation change more believable for the future 100 years. All the three scenarios experiments indicate a consistent enhancement of summer precipitation in China in the 21st century. However, the projected summer precipitation in China demonstrates large variability between sub-regions. The projected increase in precipitation in South China is significant and persistent, as well as in North China. Meanwhile, in the early period of the 21st century, the region of Northeast China is projected to be much drier than the present. But, this situation changes and the precipitation intensifies later, with a precipitation anomaly increase of 12.4%0-20.4% at the end of the 21st century. The region of the Xinjiang Province probably undergoes a drying trend in the future 100 years, and is projected to decrease by 1.7%-3.6% at the end of the 21st century. There is no significant long-term change of the projected summer precipitation in the lower reaches of the Yangtze River valley. A high level of agreement of the ensemble of the regional precipitation change in some parts of China is found across scenarios but smaller changes are projected for the B1 scenario and slightly larger changes for the A2 scenario.
基金Supported by the National Science and Technology Support Program of China (2007BAC03A01)Strategic Priority Research Program on Climate Change of the Chinese Academy of Sciences (XDA05090306)+1 种基金National Basic Research and Development (973) Program of China (2012CB955401)National Natural Science Foundation of China (40905041)
文摘Based on daily precipitation data, the spatial-temporal features of heavy rainfall events (HREs) during 1960-2009 are investigated. The results indicate that the HREs experienced strong decadal variability in the past 50 years, and the decadal features varied across regions. More HRE days are observed in the 1960s, 1980s, and 1999s over Northeast China (NEC); in the 1960s, 1970s, and 1990s over North China (NC); in the early 1960s, 1980s, and 2000s over the Huaihe River basin (HR); in the 1970s 1990s over the mid-lower reaches of the Yangtze River valley (YR); and in the 1970s and 1990s over South China (SC). These decadal changes of HRE days in eastern China are closely associated with the decadal variations of water content and stratification stability of the local atmosphere. The intensity of HREs in each sub-region is also characterized by strong decadal variability. The HRE intensity and frequency co-vary on the long-term trend, and show consistent variability over NEC, NC, and YR, but inconsistent variability over SC and HR. Further analysis of the relationships between the annual rainfall and HRE frequency as well as intensity indicates that the HRE frequency is the major contributor to the total rainfall variability in eastern China, while the HRE intensity shows only relative weak contribution.