本文研究了低频交变磁场对细胞作用的理论机理和实验结果。交变磁场和交变磁场感应的电场对运动离子产生电场力,加速离子的运行。基于该理论分析,设计了一系列的实验来验证假定的理论,实验采用两种肿瘤细胞系(HL-60 and SK-Hep-1)。将...本文研究了低频交变磁场对细胞作用的理论机理和实验结果。交变磁场和交变磁场感应的电场对运动离子产生电场力,加速离子的运行。基于该理论分析,设计了一系列的实验来验证假定的理论,实验采用两种肿瘤细胞系(HL-60 and SK-Hep-1)。将肿瘤细胞暴露于50Hz,20mT连续正弦磁场4天,每24小时检测上清液Na+和K+浓度。结果发现,照射组和对照组的Na+和K+浓度有显著变化,实验结果和理论分析相符。展开更多
聚N-异丙基丙烯酰胺(PNIPAAm)接枝的微载体由于表面同时含有疏水性的异丙基和亲水性的酰胺基而成为一种典型的温敏性微载体。但是微载体表面PNIPAAm接枝浓度会很大地影响贴附型细胞在微载体上的贴附能力和脱附能力,限制了它在相关领域...聚N-异丙基丙烯酰胺(PNIPAAm)接枝的微载体由于表面同时含有疏水性的异丙基和亲水性的酰胺基而成为一种典型的温敏性微载体。但是微载体表面PNIPAAm接枝浓度会很大地影响贴附型细胞在微载体上的贴附能力和脱附能力,限制了它在相关领域的应用效果。该实验运用原子转移自由基聚合作用(atom transfer radical polymerization,ATRP)合成法将PNIPAAm接枝到表面氯甲基化的聚苯乙烯微球[chloromethylated poly(styrene),CMPS]表面,合成不同PNIPAAm接枝浓度的温敏微载体,研究其细胞贴附、脱附以及在转瓶悬浮培养中的细胞增殖能力。同时,运用电子扫描电镜(scanning electron microscope,SEM)、原子力显微镜(atomic force microscope,AFM)、X-射线光电子能谱(X-ray photoelectron spectroscopy,XPS)对温敏微球表面形貌进行表征。实验结果表明,当PNIPAAm添加浓度是200 mmol/L时,温敏微球表现出60%的细胞脱附率及50%的细胞贴附率,并且在转瓶悬浮培养中具有持续稳定的增殖能力。另外,SEM与AFM表征结果显示,温敏微载体表面粗糙度有明显地增加;XPS结果表明,温敏微球表面N元素有显著增加。这些结果证明了微载体上温敏材料NIPAAm的成功接枝。以上实验结果表明,这种新型温敏微载体具有良好的细胞贴附和脱附能力,将会是大规模培养贴附型细胞的良好材料。展开更多
文摘本文研究了低频交变磁场对细胞作用的理论机理和实验结果。交变磁场和交变磁场感应的电场对运动离子产生电场力,加速离子的运行。基于该理论分析,设计了一系列的实验来验证假定的理论,实验采用两种肿瘤细胞系(HL-60 and SK-Hep-1)。将肿瘤细胞暴露于50Hz,20mT连续正弦磁场4天,每24小时检测上清液Na+和K+浓度。结果发现,照射组和对照组的Na+和K+浓度有显著变化,实验结果和理论分析相符。
文摘聚N-异丙基丙烯酰胺(PNIPAAm)接枝的微载体由于表面同时含有疏水性的异丙基和亲水性的酰胺基而成为一种典型的温敏性微载体。但是微载体表面PNIPAAm接枝浓度会很大地影响贴附型细胞在微载体上的贴附能力和脱附能力,限制了它在相关领域的应用效果。该实验运用原子转移自由基聚合作用(atom transfer radical polymerization,ATRP)合成法将PNIPAAm接枝到表面氯甲基化的聚苯乙烯微球[chloromethylated poly(styrene),CMPS]表面,合成不同PNIPAAm接枝浓度的温敏微载体,研究其细胞贴附、脱附以及在转瓶悬浮培养中的细胞增殖能力。同时,运用电子扫描电镜(scanning electron microscope,SEM)、原子力显微镜(atomic force microscope,AFM)、X-射线光电子能谱(X-ray photoelectron spectroscopy,XPS)对温敏微球表面形貌进行表征。实验结果表明,当PNIPAAm添加浓度是200 mmol/L时,温敏微球表现出60%的细胞脱附率及50%的细胞贴附率,并且在转瓶悬浮培养中具有持续稳定的增殖能力。另外,SEM与AFM表征结果显示,温敏微载体表面粗糙度有明显地增加;XPS结果表明,温敏微球表面N元素有显著增加。这些结果证明了微载体上温敏材料NIPAAm的成功接枝。以上实验结果表明,这种新型温敏微载体具有良好的细胞贴附和脱附能力,将会是大规模培养贴附型细胞的良好材料。