期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于顶点冲突学习的最大公共子图算法
1
作者 王宇 刘燕丽 《计算机应用》 CSCD 北大核心 2021年第6期1756-1760,共5页
针对最大公共子图(MCS)的传统分支策略依赖于图的静态属性,缺少学习历史搜索信息的问题,提出了基于顶点冲突学习的分支策略。首先,把上界的减少值作为分支点完成匹配动作的奖励;其次,由于当最优解被更新时,得到的最优解是分支点不断推... 针对最大公共子图(MCS)的传统分支策略依赖于图的静态属性,缺少学习历史搜索信息的问题,提出了基于顶点冲突学习的分支策略。首先,把上界的减少值作为分支点完成匹配动作的奖励;其次,由于当最优解被更新时,得到的最优解是分支点不断推理产生的结果,因此给予在完整的搜索路径上的分支点适当的奖励,从而强化这些顶点对搜索的积极作用;最后,设计了匹配动作的价值函数,并选择具有最大累计奖励的顶点作为新的分支点。在McSplit算法基础上,提出了糅合新分支策略的McSplitRLR算法。实验结果表明,除去均可以被所有对比算法在10 s之内解决的简单算例,在相同机器和求解限制时间条件下,相较当前先进的算法McSplit、McSplitSBS,McSplitRLR分别多解决了109、33个困难算例,求解率分别提高了5.6%、1.6%。 展开更多
关键词 组合优化问题 NP-HARD问题 强化学习 算法设计 最大公共子图
下载PDF
基于事件最大边界的密集视频描述方法
2
作者 胡慧君 刘茂福 《中国科技论文》 CAS 2024年第2期169-177,共9页
针对基于集合预测的密集视频描述方法由于缺乏显式的事件间特征交互且未针对事件间差异训练模型而导致的模型重复预测事件或生成语句雷同问题,提出一种基于事件最大边界的密集视频描述(dense video captioning based on event maximal m... 针对基于集合预测的密集视频描述方法由于缺乏显式的事件间特征交互且未针对事件间差异训练模型而导致的模型重复预测事件或生成语句雷同问题,提出一种基于事件最大边界的密集视频描述(dense video captioning based on event maximal margin,EMM-DVC)方法。事件边界是包含事件间特征相似度、事件在视频中时间位置的距离、生成描述多样性的评分。EMM-DVC通过最大化事件边界,使相似预测结果的距离远且预测结果和实际事件的距离近。另外,EMM-DVC引入事件边界距离损失函数,通过扩大事件边界距离,引导模型关注不同事件。在ActivityNet Captions数据集上的实验证明,EMM-DVC与同类密集视频描述模型相比能生成更具多样性的描述文本,并且与主流密集视频描述模型相比,EMM-DVC在多个指标上达到最优水平。 展开更多
关键词 密集视频描述 多任务学习 端到端模型 集合预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部