Manipulating the superconducting states of high transition temperature(high-Tc)cuprate superconductors in an efficient and reliable way is of great importance for their applications in next-generation electronics.Here...Manipulating the superconducting states of high transition temperature(high-Tc)cuprate superconductors in an efficient and reliable way is of great importance for their applications in next-generation electronics.Here,employing ionic liquid gating,a selective control of volatile and non-volatile superconductivity is achieved in pristine insulating Pr2CuO4±δ(PCO)films,based on two distinct mechanisms.Firstly,with positive electric fields,the film can be reversibly switched between superconducting and non-superconducting states,attributed to the carrier doping effect.Secondly,the film becomes more resistive by applying negative bias voltage up to-4V,but strikingly,a non-volatile superconductivity is achieved once the gate voltage is removed.Such phenomenon represents a distinctive route of manipulating superconductivity in PCO,resulting from the doping healing of oxygen vacancies in copper-oxygen planes as unravelled by high-resolution scanning transmission electron microscope and in situ X-ray diffraction experiments.The effective manipulation of volatile/non-volatile superconductivity in the same parent cuprate brings more functionalities to superconducting electronics,as well as supplies flexible samples for investigating the nature of quantum phase transitions in high-Tcsuperconductors.展开更多
Fe_(y)Te_(1-x)Se_(x),an archetypical iron-based high-temperature superconductor with a simple structure but rich physical properties,has attracted lots of attention because the two end compositions,Se content x=0 and ...Fe_(y)Te_(1-x)Se_(x),an archetypical iron-based high-temperature superconductor with a simple structure but rich physical properties,has attracted lots of attention because the two end compositions,Se content x=0 and 1,exhibit antiferromagnetism and nematicity,respectively,making it an ideal candidate for studying their interactions with superconductivity.However,what is clearly lacking to date is a complete phase diagram of Fe_(y)Te_(1-x)Se_(x)as functions of its chemical compositions since phase separation usually occurs from x~0.6 to 0.9 in bulk crystals.Moreover,fine control of its composition is experimentally challenging because both Te and Se are volatile elements.Here we establish a complete phase diagram of Fe_(y)Te_(1-x)Se_(x),achieved by high-throughput film synthesis and characterization techniques.An advanced combinatorial synthesis process enables us to fabricate an epitaxial composition-spread Fe_(y)Te_(1-x)Se_(x)film encompassing the entire Se content x from 0 to 1 on a single piece of CaFsubstrate.The micro-region composition analysis and X-ray diffraction show a successful continuous tuning of chemical compositions and lattice parameters,respectively.The micro-scale pattern technique allows the mapping of electrical transport properties as a function of relative Se content with an unprecedented resolution of0.0074.Combining with the spin patterns in literature,we build a detailed phase diagram that can unify the electronic and magnetic properties of Fe_(y)Te_(1-x)Se_(x).Our composition-spread Fe_(y)Te_(1-x)Se_(x) films,overcoming the challenges of phase separation and precise control of chemical compositions,provide an ideal platform for studying the relationship between superconductivity and magnetism.展开更多
2023年1月16日,《自然-物理学》(Nature Physics)在线刊发了中国科学院物理研究所/北京凝聚态物理国家研究中心超导国家重点实验室金魁、陈其宏团队题为“Interplay between superconductivity and the strange-metal state in FeSe”...2023年1月16日,《自然-物理学》(Nature Physics)在线刊发了中国科学院物理研究所/北京凝聚态物理国家研究中心超导国家重点实验室金魁、陈其宏团队题为“Interplay between superconductivity and the strange-metal state in FeSe”的研究成果。博士生江星宇、秦明阳、魏鑫健为并列第一作者,陈其宏特聘研究员和金魁研究员为共同通讯作者。展开更多
基金supported by the National Key Basic Research Program of China(2015CB921000,2016YFA0300301,2017YFA0302902,2017YFA0303003 and 2018YFB0704102)the National Natural Science Foundation of China(11674374 and 11834016)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB25000000)the Key Research Program of Frontier Sciences,CAS(QYZDB-SSW-SLH008 and QYZDY-SSW-SLH001)CAS Interdisciplinary Innovation Teambenefited from the bilateral collaboration F.R.S.-FNRS/NSFC(V4/345-DeM-229)。
文摘Manipulating the superconducting states of high transition temperature(high-Tc)cuprate superconductors in an efficient and reliable way is of great importance for their applications in next-generation electronics.Here,employing ionic liquid gating,a selective control of volatile and non-volatile superconductivity is achieved in pristine insulating Pr2CuO4±δ(PCO)films,based on two distinct mechanisms.Firstly,with positive electric fields,the film can be reversibly switched between superconducting and non-superconducting states,attributed to the carrier doping effect.Secondly,the film becomes more resistive by applying negative bias voltage up to-4V,but strikingly,a non-volatile superconductivity is achieved once the gate voltage is removed.Such phenomenon represents a distinctive route of manipulating superconductivity in PCO,resulting from the doping healing of oxygen vacancies in copper-oxygen planes as unravelled by high-resolution scanning transmission electron microscope and in situ X-ray diffraction experiments.The effective manipulation of volatile/non-volatile superconductivity in the same parent cuprate brings more functionalities to superconducting electronics,as well as supplies flexible samples for investigating the nature of quantum phase transitions in high-Tcsuperconductors.
基金supported by the National Key R&D Program of China(2021YFA0718700,2017YFA0302902,2017YFA0303003,and 2018YFB0704102)the National Natural Science Foundation of China(11834016,11961141008,11927808,and 12174428)+3 种基金the Strategic Priority Research Program(B)of Chinese Academy of Sciences(XDB25000000 and XDB33000000)the Beijing Natural Science Foundation(Z190008)CAS Interdisciplinary Innovation Team,Key-Area Research and Development Program of Guangdong Province(2020B0101340002)the Center for Materials Genome。
文摘Fe_(y)Te_(1-x)Se_(x),an archetypical iron-based high-temperature superconductor with a simple structure but rich physical properties,has attracted lots of attention because the two end compositions,Se content x=0 and 1,exhibit antiferromagnetism and nematicity,respectively,making it an ideal candidate for studying their interactions with superconductivity.However,what is clearly lacking to date is a complete phase diagram of Fe_(y)Te_(1-x)Se_(x)as functions of its chemical compositions since phase separation usually occurs from x~0.6 to 0.9 in bulk crystals.Moreover,fine control of its composition is experimentally challenging because both Te and Se are volatile elements.Here we establish a complete phase diagram of Fe_(y)Te_(1-x)Se_(x),achieved by high-throughput film synthesis and characterization techniques.An advanced combinatorial synthesis process enables us to fabricate an epitaxial composition-spread Fe_(y)Te_(1-x)Se_(x)film encompassing the entire Se content x from 0 to 1 on a single piece of CaFsubstrate.The micro-region composition analysis and X-ray diffraction show a successful continuous tuning of chemical compositions and lattice parameters,respectively.The micro-scale pattern technique allows the mapping of electrical transport properties as a function of relative Se content with an unprecedented resolution of0.0074.Combining with the spin patterns in literature,we build a detailed phase diagram that can unify the electronic and magnetic properties of Fe_(y)Te_(1-x)Se_(x).Our composition-spread Fe_(y)Te_(1-x)Se_(x) films,overcoming the challenges of phase separation and precise control of chemical compositions,provide an ideal platform for studying the relationship between superconductivity and magnetism.
基金This work was supported by the National Key Basic Research Program of China(2021YFA0718700,2017YFA0302900,2017YFA0303003,2018YFB0704102,and 2018YFA0305800)the National Natural Science Foundation of China(11888101,11927808,11834016,11961141008,12174428,and 12274439)+4 种基金the Strategic Priority Research Program(B)of Chinese Academy of Sciences(XDB25000000,XDB33000000)CAS Interdisciplinary Innovation Team,Beijing Natural Science Foundation(Z190008)CAS through the Youth Innovation Promotion Association(2022YSBR-048)Key-Area Research and Development Program of Guangdong Province(2020B0101340002)the Center for Materials Genome.
文摘2023年1月16日,《自然-物理学》(Nature Physics)在线刊发了中国科学院物理研究所/北京凝聚态物理国家研究中心超导国家重点实验室金魁、陈其宏团队题为“Interplay between superconductivity and the strange-metal state in FeSe”的研究成果。博士生江星宇、秦明阳、魏鑫健为并列第一作者,陈其宏特聘研究员和金魁研究员为共同通讯作者。