期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv5模型的经济林木虫害目标检测算法研究 被引量:16
1
作者 何颖 彭琳 《中国农机化学报》 北大核心 2022年第4期106-115,共10页
对经济林木虫害进行目标检测有助于及时发现虫情,从而更有针对性地控制虫害。首先采用加权双向特征融合技术丰富各级特征图的语义信息和修改自适应Anchor计算方法对YOLOv5主干网络模型进行改进,然后在含20种经济林木虫害的图像扩增数据... 对经济林木虫害进行目标检测有助于及时发现虫情,从而更有针对性地控制虫害。首先采用加权双向特征融合技术丰富各级特征图的语义信息和修改自适应Anchor计算方法对YOLOv5主干网络模型进行改进,然后在含20种经济林木虫害的图像扩增数据集上进行试验,最后与多种基于深度学习的目标检测方法进行对比。试验结果表明:改进后的YOLOv5模型相对于YOLOv3、YOLOv4、YOLOv5、Faster-RCNN和CenterNet模型,其平均精度均值分别提升0.133、0.156、0.113、0.128和0.078,最优达到0.923,模型推断速度为64.9帧。因此,改进的YOLOv5模型对经济林木虫害检测已达到实际应用水平,可为经济林木虫害预警系统提供算法支撑。 展开更多
关键词 经济林木 虫害 YOLOv5 深度学习 特征融合 目标检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部