期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLOv5模型的经济林木虫害目标检测算法研究
被引量:
16
1
作者
何颖
陈
丁
号
彭琳
《中国农机化学报》
北大核心
2022年第4期106-115,共10页
对经济林木虫害进行目标检测有助于及时发现虫情,从而更有针对性地控制虫害。首先采用加权双向特征融合技术丰富各级特征图的语义信息和修改自适应Anchor计算方法对YOLOv5主干网络模型进行改进,然后在含20种经济林木虫害的图像扩增数据...
对经济林木虫害进行目标检测有助于及时发现虫情,从而更有针对性地控制虫害。首先采用加权双向特征融合技术丰富各级特征图的语义信息和修改自适应Anchor计算方法对YOLOv5主干网络模型进行改进,然后在含20种经济林木虫害的图像扩增数据集上进行试验,最后与多种基于深度学习的目标检测方法进行对比。试验结果表明:改进后的YOLOv5模型相对于YOLOv3、YOLOv4、YOLOv5、Faster-RCNN和CenterNet模型,其平均精度均值分别提升0.133、0.156、0.113、0.128和0.078,最优达到0.923,模型推断速度为64.9帧。因此,改进的YOLOv5模型对经济林木虫害检测已达到实际应用水平,可为经济林木虫害预警系统提供算法支撑。
展开更多
关键词
经济林木
虫害
YOLOv5
深度学习
特征融合
目标检测
下载PDF
职称材料
题名
基于改进YOLOv5模型的经济林木虫害目标检测算法研究
被引量:
16
1
作者
何颖
陈
丁
号
彭琳
机构
云南农业大学大数据学院
出处
《中国农机化学报》
北大核心
2022年第4期106-115,共10页
基金
国家自然科学基金(31960290)
云南省重大科技专项计划项目资助(202002AD080002—6)
云南省基础研究专项(202101AT070248)。
文摘
对经济林木虫害进行目标检测有助于及时发现虫情,从而更有针对性地控制虫害。首先采用加权双向特征融合技术丰富各级特征图的语义信息和修改自适应Anchor计算方法对YOLOv5主干网络模型进行改进,然后在含20种经济林木虫害的图像扩增数据集上进行试验,最后与多种基于深度学习的目标检测方法进行对比。试验结果表明:改进后的YOLOv5模型相对于YOLOv3、YOLOv4、YOLOv5、Faster-RCNN和CenterNet模型,其平均精度均值分别提升0.133、0.156、0.113、0.128和0.078,最优达到0.923,模型推断速度为64.9帧。因此,改进的YOLOv5模型对经济林木虫害检测已达到实际应用水平,可为经济林木虫害预警系统提供算法支撑。
关键词
经济林木
虫害
YOLOv5
深度学习
特征融合
目标检测
Keywords
economic forest
insect pests
YOLOv5
deep learning
feature fusion
object detection
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLOv5模型的经济林木虫害目标检测算法研究
何颖
陈
丁
号
彭琳
《中国农机化学报》
北大核心
2022
16
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部