期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
自动确定聚类中心的移动时间势能聚类算法
1
作者 葛洪伟 周竞 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第1期143-153,共11页
移动时间层次聚类(Travel-Time based Hierarchical Clustering,TTHC)是一种新的势能聚类算法,尽管具有较好的聚类效果,但是该算法需要人工设定聚类数目,而且在分配样本的时候仅根据相似度,忽略了距离和势能的影响.针对以上问题,提出一... 移动时间层次聚类(Travel-Time based Hierarchical Clustering,TTHC)是一种新的势能聚类算法,尽管具有较好的聚类效果,但是该算法需要人工设定聚类数目,而且在分配样本的时候仅根据相似度,忽略了距离和势能的影响.针对以上问题,提出一种自动确定聚类中心的移动时间势能聚类算法.首先计算每个数据点的势能和相似度,然后根据相似度确定数据点的父节点,得到数据点与父节点的距离;然后,根据数据点与父节点的相似度、距离和数据点的势能得到综合考量值,根据综合考量值自动确定聚类中心;最后,将剩余数据点分配到比其势能小且与其相似度最大的数据点所属类簇,得到聚类结果.将新算法与TTHC算法进行比较,在人工数据集和真实数据集上的实验结果表明,新算法不仅能够自动确定聚类数目,而且采用了更优的分配机制,可以产生更好的聚类结果. 展开更多
关键词 聚类 TTHC 移动时间 自动确定聚类数目
下载PDF
一种抗噪的移动时间势能聚类算法
2
作者 葛洪伟 《计算机工程》 CAS CSCD 北大核心 2020年第5期144-149,共6页
移动时间层次聚类是一种势能聚类算法,具有较好的聚类效果,但该算法无法识别数据集中存在的噪声数据点。为此,提出一种抗噪的移动时间势能聚类算法。通过各个数据点的势能值以及数据点之间的相似度找到各个数据点的父节点,计算各数据点... 移动时间层次聚类是一种势能聚类算法,具有较好的聚类效果,但该算法无法识别数据集中存在的噪声数据点。为此,提出一种抗噪的移动时间势能聚类算法。通过各个数据点的势能值以及数据点之间的相似度找到各个数据点的父节点,计算各数据点到父节点的距离,按照该距离以及数据点的势能得到λ值,并依照λ值大小构造递增曲线,通过递增曲线中的拐点来识别出噪声点,将噪声数据归到新的类簇中,对去除噪声点后的数据集,根据数据点与父节点的距离进行层次聚类来获得聚类结果。实验结果表明,该算法能够识别出数据集中的噪声数据点,从而得到更优的聚类效果。 展开更多
关键词 聚类算法 势能 移动时间层次聚类 噪声识别 数据集
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部