针对结直肠息肉图像中病灶区域尺度变化大、形状不规则和边界不清晰等复杂特点导致息肉分割精度低、分割边界存在伪影的问题,提出了一种融合Transfomer和多尺度并行注意网络(Fusion of Transfomer and Multiscale Parallel Attention Ne...针对结直肠息肉图像中病灶区域尺度变化大、形状不规则和边界不清晰等复杂特点导致息肉分割精度低、分割边界存在伪影的问题,提出了一种融合Transfomer和多尺度并行注意网络(Fusion of Transfomer and Multiscale Parallel Attention Networks, FTMPA-Net)的结直肠息肉分割算法。选用HarDNet逐层提取语义信息和空间细节,采用多尺度感受场模块(Multiscale Receptive Field Block, RFB)捕获不同感受野下的特征信息,串入高效通道注意力机制提取空间、通道特征的相关性信息,以抑制背景颜色的响应;通过并行解码模块逐层聚合由高效通道注意力机制得到的增强特征图,并生成初始预测分割图用于后续深层监督;提出高效多头注意力机制(Efficient Multi-Head Self-Attention Module, EMHSA)来进一步细化边缘信息,构建区域与边界之间的联系,以提高其分割性能。在CVC-ClinicDB数据集和Kvasir-SEG数据集上对该算法进行测试,平均相似性系数分别为95.58%和92.34%,平均交并比分别为91.70%和86.77%。实验结果表明,FTMPA-Net能明显提高分割精度,减少分割边界伪影,无论是从客观的指标上还是从视觉效果上,该算法的整体性能均优于现有算法。展开更多