为了解决推荐列表偏向于热门项目,多样性差的问题,提出了ARIFDP算法(aggregation recommendation algorithm for embedding item fatigue and diversity preference)。首先通过对用户历史反馈数据分析用户的多样性偏好,得出用户的多样...为了解决推荐列表偏向于热门项目,多样性差的问题,提出了ARIFDP算法(aggregation recommendation algorithm for embedding item fatigue and diversity preference)。首先通过对用户历史反馈数据分析用户的多样性偏好,得出用户的多样倾向度,进而构造了与评价次数负相关的项目疲劳函数,最终将矩阵分解与项目疲劳函数相聚合,并加入多样倾向度调节项目疲劳函数所占权重,增加了冷门项目被推荐的概率。实验结果表明,ARIFDP算法能在保证准确率的前提下有效提高推荐结果的多样性。展开更多
文摘为了解决推荐列表偏向于热门项目,多样性差的问题,提出了ARIFDP算法(aggregation recommendation algorithm for embedding item fatigue and diversity preference)。首先通过对用户历史反馈数据分析用户的多样性偏好,得出用户的多样倾向度,进而构造了与评价次数负相关的项目疲劳函数,最终将矩阵分解与项目疲劳函数相聚合,并加入多样倾向度调节项目疲劳函数所占权重,增加了冷门项目被推荐的概率。实验结果表明,ARIFDP算法能在保证准确率的前提下有效提高推荐结果的多样性。