To achieve robust gate operations on superconducting charge qubits, we theoretically propose a feasible scheme to realize geometric quantum computation via coherent pulses. Only by adiabatically tuning the microwave p...To achieve robust gate operations on superconducting charge qubits, we theoretically propose a feasible scheme to realize geometric quantum computation via coherent pulses. Only by adiabatically tuning the microwave pulses applied to the gate capacitance can the Berry phases associated with the system be acquired, from which we construct a universal set of geometric gates. Combining the geometric approach with the coherent pulse technique, robust quantum operations aimed at combating noise errors may be implemented experimentally.展开更多
Construction of optimal gate operations is significant for quantum computation.Here an efficient scheme is proposed for performing shortcut-based quantum gates on superconducting qubits in circuit quantum electrodynam...Construction of optimal gate operations is significant for quantum computation.Here an efficient scheme is proposed for performing shortcut-based quantum gates on superconducting qubits in circuit quantum electrodynamics(QED).Two four-level artificial atoms of Cooper-pair box circuits,having sufficient level anharmonicity,are placed in a common quantized field of circuit QED and are driven by individual classical microwaves.Without the effect of cross resonance,one-qubit NOT gate and phase gate in a decoupled atom can be implemented using the invariant-based shortcuts to adiabaticity.With the assistance of cavity bus,a one-step SWAP gate can be obtained within a composite qubit-photon-qubit system by inversely engineering the classical drivings.We further consider the gate realizations by adjusting the microwave fields.With the accessible decoherence rates,the shortcut-based gates have high fidelities.The present strategy could offer a promising route towards fast and robust quantum computation with superconducting circuits experimentally.展开更多
文摘To achieve robust gate operations on superconducting charge qubits, we theoretically propose a feasible scheme to realize geometric quantum computation via coherent pulses. Only by adiabatically tuning the microwave pulses applied to the gate capacitance can the Berry phases associated with the system be acquired, from which we construct a universal set of geometric gates. Combining the geometric approach with the coherent pulse technique, robust quantum operations aimed at combating noise errors may be implemented experimentally.
基金Project supported by the Natural Science Foundation of Henan Province,China (Grant No. 212300410388)the “316” Project Plan of Xuchang University
文摘Construction of optimal gate operations is significant for quantum computation.Here an efficient scheme is proposed for performing shortcut-based quantum gates on superconducting qubits in circuit quantum electrodynamics(QED).Two four-level artificial atoms of Cooper-pair box circuits,having sufficient level anharmonicity,are placed in a common quantized field of circuit QED and are driven by individual classical microwaves.Without the effect of cross resonance,one-qubit NOT gate and phase gate in a decoupled atom can be implemented using the invariant-based shortcuts to adiabaticity.With the assistance of cavity bus,a one-step SWAP gate can be obtained within a composite qubit-photon-qubit system by inversely engineering the classical drivings.We further consider the gate realizations by adjusting the microwave fields.With the accessible decoherence rates,the shortcut-based gates have high fidelities.The present strategy could offer a promising route towards fast and robust quantum computation with superconducting circuits experimentally.